IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1982

The Full Optimized Reaction Space model for
quantum cﬁemical reaction calculations.
Definition, applications, and IntraAtomic
Correlation Correction extension

Michael William Schmidt
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Physical Chemistry Commons

Recommended Citation

Schmidt, Michael William, "The Full Optimized Reaction Space model for quantum chemical reaction calculations. Definition,
applications, and IntraAtomic Correlation Correction extension " (1982). Retrospective Theses and Dissertations. 8386.

https://lib.dr.iastate.edu/rtd /8386

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8386?utm_source=lib.dr.iastate.edu%2Frtd%2F8386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘‘sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universi
Iv\?c?'onyﬁlms
International

300 N. Zeeb Road
Ann Arbor, M| 48106






8307789
Schmidt, Michael William

THE FULL OPTIMIZED REACTION SPACE MODEL FOR QUANTUM
CHEMICAL REACTION CALCULATIONS. DEFINITION, APPLICATIONS,
AND THE INTRAATOMIC CORRELATION CORRECTION EXTENSION

Iowa State University PuD. 1982

University
Microfilms
International 0. zeeb Road, Ann Arbor, M1 48106






The Full Optimized Reaction Space model for quantum
chemical reaction calculations. Definition, applications,

and the IntraAtomic Correlation Correction extension
by

Michael William Schmidt

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requi rements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry
Major: Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

F&f the Major Departmept

Signature was redacted for privacy.

For the Graduate College

lowa State University
Ames, lowa

1982



TABLE OF CONTENTS

INTRODUCTION

THE FORS MODEL AND ITS APPLICATION TO DIATOM!C MOLECULES

A.

G.

H.

Introduction

Dominance of the Atomic Minimal Basis Set in
Molecular Wavefunctions: Effective Molecular Bases

The Full Optimized Reaction Space (FORS) Model
Molecular Wavefunctions and the ALIS Programs
Examples: Diatémics with Small Full Reaction Spaces
Methodologies for Large Full Reaction Spaces

1. Optimization in a Large FRS

2. Obtaining initial CGOs

3. An alternative choice of initial CGOs: the
atomic MBS

4, Illustration of the MBS FRS Cl alternative: F2
Examples: Diatomics with Large Full Reaction Spaces

Diatomics as a Test of the FORS Model

ORBITAL ANALYSES OF FORS WAVEFUNCTIONS

A.
B.

Introduction

Invariance of the Core Orbital Space

1. Canonical core CGOs

2. Localized core CGOs

Invariance of the Reactive Orbital Space
1. Natural reaction orbitals

2. Localized reaction orbitals

Page

13
16
17
24
26
29

33
35
Lo
45
57
57
58
58
59
59
60
61



Page

D. Projected Localized Orbitals 65
E. Chemically Adapted MOs 76
F. Examples of Orbital Types 79
G. The FORS Model Reexamined 90
CONCERTED D!HYDROGEN EXCHANGE BETWEEN ETHANE AND ETHYLENE.
SCF AND FORS CALCULATIONS OF THE BARRIER 94
A. Introduction 94
B. Calculational Details ‘ 96
C. Results and Discussion of SCF Calculations 97
1. Geometry 97
2, SCF picture of the electronic structure 100
3. Energies 106
D. Results and Discussion of FORS Calculations 109
1. Wavefunctions and energies 111
2. FORS picture of the electronic structure 112
E. Discussion of Barrier 120
F. Reconciliation of High Barrier and Experimental
Results 127
Cp, REACTIONS IN THE DIOXIRANE/DIOXYMETHANE SYSTEM:
APPLICATION TO OZONOLYSIS 130
A. Introduction 130
1. Chemical background 130
2. Object of present study 136
B. Configurational Description of the Reaction 138
1. Formation of dioxirane and dioxymethane 139

2. Dissociation of dioxymethane 144



Page

C. Calculational Details 147
1. Selection of reaction coordinate 147

2, Basis sets 152

D. Results and Discussion 153
1. Formation of dioxirane and dioxymethane 153

2. Dissociation of dioxymethane 161

3. Accuracy of calculated geometries 163

L4, Energetics 170

5. Spectrum during ring opening 174

6. Comparison to previous work 180

E. Conclusions 183

VI, THE INTRAATOMIC CORRELATION CORRECTION TO THE FORS MODEL:

APPLICATION TO HZ’ NH, AND F2 185
A. Theoretical Development 185
1. Synopsis of AIM theory 185

2. Types of atomic correction terms 189

3. The ICC modification of AIM theory 194

4. The FORS-IACC procedure 197

B. Applications 201
1. Implementing the IACC correction 201

2. H2 204

3. M 209

b F, 223

5. Discussion and Conclusions 229



Page

C. Appendix: Real Atomic States 233

1. pN states 234

2. ssz and sle states 21

Vii. REFERENCES 244

ViIlT., ACKNOWLEDGEMENTS 251



I. INTRODUCTION

A strong impact of quantum chemistry can be expected to occur in
the field of chemical reactions because theoretical calculations of
reaction paths and transition states are, in principle, no different in
nature from those of stable molecules, whereas the experimental elucida-
tion of reaction intermediates is subject to many uncertainties due to
their fleeting appearance and disappearance.

However, even for the theoretical approach, there exists a marked
difference between the calculation of stable species and that of molecular
structures characteristic for most reaction intermediates. While the
standard self-consistent-field method has proved to be a very service-
able ''dominant approximation'' for many stable molecules, it is rarely
adequate for systems in the flux of reéctive changes, where orbitals
not only deform but, in addition, change occupation numbers due to
changes in configurational mixing. In fact, on the basis of currently
available experience, it is not possible to anticipate which configura-
tions will dominate a wavefunction at various points on a reactive path.
Consider, for example, the case that reactants and products are well
described by single determinant SCF functions and that many, but not all
of the occupied orbitals continuously deform into certain occupied
product orbitals. Some of the doubly occupied reactant orbitals deform,
however, into virtual (unoccupied) product orbitals and, correspondingly,
some of the virtual reactant orbitals deform into doubly occupied
product orbitals. 1In such a case, it is tempting to calculate the

reaction using a two determinant wavefunction. But more often than not



in the intermediate region where the ''reaction orbitals'' have occupa=
tion numbers close to unity, there exist numerous other configurations

in addition to the reactant and product configurations which have similar
importance in the wavefunction. Their inclusion in the dominant part

of the wavefunction proves to be essential, in particular, for the
calculation of reaction barriers.

Conversely, it is also important to know which parts of the exact
wavefunction can be completely neglected for calculations along a
specific reaction path. Since full recovery of the correlation energy
by direct computation is out of the question, even with present day
computers, the practical goal of quantum chemistry is always the calcula-
tion of emergy curves which are reliably parallel to the exact energy
surfaces by including all those correlation effects which change
significantly (i.e., more than kT) while omitting those effects which
do not and, hence, would cancel when energy differences are taken.

This parallelism is required for quantitative evaluation of both overall
reaction energetics and barrier heights.

From the preceding remarks, it can be inferred that it is essential
to avoid unjustified restrictions in the selection of configurations or
in the orbitals from which these configurations are formed, so that all
pertinent changes can be reflected without bias in the calculation. As
mentioned, this is even more crucial for transition states than
products or reactants. Unbiased configuration generating orbitals can
be guaranteed by use of a multi-configurational SCF approach with

adequately large atomic basis sets. Elimination of prejudice in the



~selection of configurations calls for an MCSCF model that makes provi-
sion for the free interaction of all configurations which may become
significant during the course of the molecular rearrangements. It is,
therefore, necessary to formulate a method for determining configuration
generating orbitals and for selecting configurations which is general,
unambiguously defined, without any bias, and quantitatively reliable.

In addition, it is desirable that the model lend itself in a natural,
but rigorous way, to suitable chemical interpretation in terms of atoms
and bonds.

The Full Optimized Reaction Space (FORS) model for the treatment
of chemical reactions is described in Chapter |l. The FORS model is
illustrated, and its quantitative reliability assessed by calculations
on dfatomic molecules. In Chapter Ill, certain orbital invariances in
FORS wavefunctions are exploited to obtain a number of different, yet
equivalent sets of orbitals, including a new type of localized orbital,
obtained by projection. These orbital sets reveal different chemical
aspects of the FORS wavefunction, including molecular bonding and the
participation of atoms in the molecular environment. Two polyatomic
reactions are examined in the next two chapters. In Chapter IV, the
dihydrogen exchange reaction between ethane and ethylene is shown via
SCF calculations to possess a large reaction barrier, in spite of the
reaction’s symmetry-allowedness. FORS calculations serve to reinforce
this result. Various orbital sets from both the SCF and FORS wavefunc-
tions are used to analyze the presence and magnitude of the barrier to

this exchange. Chapter V deals with a reaction important in gas phase



ozonolysis. The insertion of singlet methylene into singlet oxygen to
form the small ring molecule dioxirane, the opening of this ring to
dioxymethane, and the decomposition of dioxymethane to hydrogen and
carbon dioxide are examined. This reactive sequence features extensive
configurational mixing and, hence, is treated entirely at the FORS
level. Finally, Chapter VI describes how a FORS wavefunction can be
transformed, with the help of the projected localized orbitals, into an
equivalent function that is a superposition of products of atomic and
ionic states. Such an analysis reveals how vaEious atomic and ionic
valence states participate in molecular wavefunctions. Furthermore,

- knowledge of such "atoms-in-molecules' expansions permits the incorpora=-
tion of data from atomic spectra according to an empirical correction
scheme termed the IntraAtomic Correlation Correction. This correction
to the FORS wavefunction is shown to yield improved results for the
bond strengths of diatomics.

A number of abbreviations will be used repeatedly in the following
chapters. Many of these abbreviations are common quantum chemical usage,
while others may not be. These terms are defined where first used, but
are gathered here for convenience.

AO Atomic Orbital =~ The functions, usually atom centered, in which
the molecular orbitals are expressed.

PAO Primitive Atomic Orbital - An exponential or Gaussian A0 with
fixed exponent, multiplied by appropriate angular dependence to

form an s, p, d, etc. PAO.



QB0

MBS

MO

CGO

NRO

LRO

PLO

Quantitative Basis Orbital - A fixed linear combination of PAOs.
There are ordinarily fewer QBOs than PAOs. These ''contractions'
combine only functions with the same angular dependence on the
same nucleus. The MOs are expanded in the QBO basis.

Minimal Basis Set - [If the number of QBOs used on an atom just
equals the number of orbitals occupied in that atom's SCF function,
the basis is minimal. Ordinarily an extended, more flexible,
basis is used.

Molecular Orbital - A linear combination of QBOs. There are a
number of types:

Configurational Generating Orbital - Any MO which is occupied in
any of the configurations in the wavefunction. |

Natural Reaction Orbitals - The particular set of reactive MOs

whose first order density matrix is diagonal. Often called

simply NOs.

.Localized Reaction Orbitals - Any set of reactive MOs which has

been localized by any feasible method.

Projected Localized Orbitals - A set of core and reactive MOs
which has been localized by a projective technique. The PLOs are

usually very atomic in character.

The above types of AOs and MOs depend on the coordinates of only a

single electron. The following terms refer to N electron basis functions:

SAAP Spin Adapted Antisymmetrized Product - A product of space

orbitals (MOs), multiplied by a Serber spin function, and

antisymmetrized.



CSF

CF

There

SCF

Cl

MCSCF

A few

FRS

FORS

AlM

Configurational State Function =~ Often identical with a SAAP.
In cases of high point symmetry, a CSF is a fixed linear combina-
tion of a few SAAPs having the correct spatial symmetry.
Composite Function = An antisymmetrized product of atomic
eigenstates. This is a different type of N electron function
than a CSF.

are three major types of MO calculations:

Self-Consistent Field - A type of wavefunction using only one
configuration (CSF) for which the expansion of the MOs in the QBO
basis is optimized.

Configuration Interaction = A type of wavefunction in which
more than one configuration is used, but the MOs from which these
configurations are built are held constant.

Multi-Configuration SCF =~ The ''logical or' of SCF and Cl. Both
the expansion coefficients of the configurations, and the expan-
sions of the MOs in the QBO basis are optimized.

other terms are given below.

Full Reaction Space = A set of all possible CSFs (or CFs)
obtained by occupying the reactive orbitals by the reactive elec-
trons in all possible ways.

Full Optimized Reaction Space =~ A MCSCF model, wherein the
orbitals used to generate a FRS are optimized for that particular
configurational space via MCSCF calculation.

Atoms in Molecules - An empirical correction scheme, whereby a

molecular wavefunction fis expanded in a CF basis, and corrected



by use of known atomic data.
IcC Intraatomic Correlation Correction - An AIM calculation, in
which basis set corrections due to rescaling are omitted.
IACC IntraAtomic Correlation Correction = An AIM calculation in
which a FRS of CFs, formed from molecule optimized orthonormal
PLOs, is used, and the corrections. applied account onty for the
neglect of atomic correlation and relativity effects for each CF.
Two dimensionless units are used throughout. The atomic unit of
length is the bohr; 1 bohr = 0.52917715 A. The atomic unit of energy
is the Hartree; 1 h = 27.212 eV = 627.51 Kcal/mole = 219475 cm-]. The
Hartree is a very large unit; chemical energy differences are usually

measured in millihartrees (mh).



Il. THE FORS MODEL AND ITS APPLICATION TO DIATOMIC MOLECULES

A. Introduction

The model of the Full Optimized Reaction Space (FORS) was developed
to do justice to the desiderata for a theory of chemical reactions listed
in Chapter |. This model was first introduced by Ruedenberg and Sundberg
(1976) and has subsequently been applied to a number of reactions by
Sundberg (1975), Cheung, Sundberg and Ruedenberg (1979), Dombek (1977),
Feller (1979), Johnson and Schmidt (1981), and Feller, Schmidt and
Ruedenberg (1982). More recently, the concept has been adopted by Roos
et al. (1980) and Siegbahn et al. (1980) under the name '‘complete
active space''.

The model bears some relationship to certain previous approaches.
One is that taken several years ago by Schaefer and Harris (1968) in
their calculations using the full valence space generated from fixed
minimal basis set Slater-type atomic orbitals. Others are represented
by various MCSCF models with restricted configuration selection such as
the Optimized Valence Configurations (0VC) approach of Wahl and Das
(1977), the Hartree-Fock plus Proper Dissociation (HF+PD) model of Lie
and Clementi (1974), the Generalized Valence Bond (GVB) method of
Bobrowicz and Goddard (1977), or the separated pair model of Silver,
Mehler and Ruedenberg (1970). Very similar in spirit to the present
approach are the GVB-C! calculations of Hunt et al. (1972) and Dunning
et al. (1976), and the Valence Cl calculation of Kirby-Docken and Liu
(1977) . However, before the advent of the FORS model, there had been

no attempt to combine consistently the concept of the full configuration



space with the principal of orbital optimization in this space and to
explore systematically the implications of such a framework.

The unambiguous formulation of orbital and configurational spaces
that are sufficiently general and unbiased to lead to quantitative
potential energy surfaces is the major goal of the FORS model. This
goal is obtained with the help of the minimal basis set concept.

B. Dominance of the Atomic Minimal Basis Set in
Molecular Wavefunctions: Effective Molecular Bases

Experimental and theoretical chemists alike routinely use the con-
cept of "formal minimal basis sets' of atomic orbitals when interpreting
or anticipating the results of quantitative molecular calculations in an
intuitive manner. By contrast, minimal basis sets usually do not play
a prominent role in the actual execution of most current ab initio cal-
culations, since extended A0 bases have proven to be essential for
obtaining quantitative results. Bardo and Ruedenberg (1974) as well as
Feller and Ruedenberg (1979) have shown, however, that, in fact, minimal
basis sets also dominate the A0 expansions of accurate molecular ab
initio wavefunctions. These authors calculated very accurate SCF wave-
functions in terms of large {(up to 16s,8p,2d) uncontracted bases of
Gaussian primitives and then determined '"molecular-adapted' contractions
of the same primitives in such a manner that SCF calculations in terms
of these contracted bases would optimally reproduce the uncontracted
calculations.

The aforementioned investigations led to the following conclusions

regarding efficient and quantitatively reliable contracted A0 bases:



(11)

(iii)

(iv)

(v)

10

On each atom, there exists a small number of dominant con-
tracted AOs whose occupation numbers exceed those of the rest
by an order of magnitude at least. The number of these
dominant contracted AOs on any atom is always equal to the
number of minimal basis set AOs of that atom;

Only a small number of additional contracted AOs (one, two or
three, depending upon the desired accuracy) is required to
recover the results of the uncontracted calculations;

A large overlap (usually in excess of 0.9) exists between the
orbital space spanned by the dominant molecular-adapted con-
tractions mentioned under (i) and the orbital space spanned

by the minimal basis set SCF AOs of the free atom;

The orbital space spanned by the dominant molecule-adapted
contracted AOs mentioned under (i) and (ii) is practically
identical with that obtained when the few lowest-lying virtual
SCF AOs of the free atom are added to the minimal basis set
free-atom SCF AOs mentioned under (iii);

For the purpose of spanning the orbital space required to
express molecular wavefunctions, the low-lying virtual free-

atom SCF AOs can be replaced by the most diffuse Gaussian

primitives. This is so because the lowest virtual free-atom
AOs in a given basis of primitives are nearly identical with
those AOs which are obtained by Schmidt orthogonalizing the

most diffuse primitives to all occupied free-atom SCF AOs.
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Another consideration is the choice of primitive atomic orbitals
(PAOs) to be used in constructing the contracted basis set. Molecular
calculations are usually performed with functions having a Gaussian
radial dependence, as suggested by Boys (1950). A simple and convenient
choice for the Gaussian exponents is the even~tempered criterion of
Ruedenberg, Raffenetti and Bardo (1973), namely CK = aBK. Raffenetti
(1975) has presented a few such Gaussian PAO bases. Feller and
Ruedenberg (1979) and Schmidt and Ruedenberg (1979) have shown how the
parameters o and B vary as the size of the primitive set is changed.
Finally, Schmidt and Ruedenberg (1979) have presented Gaussian bases for
hydrogen to argon, inclusive. These PAD sets are given for small to
very large expansion lengths.

The ready availability of such PAO bases and the previously detailed
conclusions regarding efficient contraction schemes suggests the fol-
lowing "recipe'' for constructing basis sets to be used in molecular
calculations:

PAOs: A set of even-tempered Gaussian primitives which approacHes the
atomic Hartree-Fock limit to the desired level of accuracy is
chosen. These PAOs are contracted to two types of quantitative
basis orbitals (QBOs).

Principal QBOs: The MBS of the occupied SCF-AOs of the free atoms.

For hydrogen, the free-atom A0 can be chosen with a scale factor
of 1.2, provided that the hydrogen is not dissociated during the

reaction of interest, in which case it should be unscaled.
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Secondary QBOs: Single Gaussian primitives. They are of three kinds.

(i) The most diffuse PAOs that occur in the principal QBOs, as
discussed above;

(ii) Polarization functions, i.e., PAOs with % quantum numbers
higher than those of the principal QBOs;

(1i1) Very diffuse PAOs with the same % quantum numbers as the
principal QBOs, but whose orbital exponent is chosen as the
even-tempered parameter o for atoms possessing appreciable
negative charge in the molecule or o/8 for Rydberg states.

Such extended basis sets were first suggested by Raffenetti (1973),
and hence will be termed Raffenetti~type bases. Molecular calculations
can be easily and routinely performed with such bases. They are at
least as effective as any other type of contracted A0 basis and, more-
over, are easily constructed for any atom, for any arbitrary number of
primitives and for any size of the contracted basis. They have the
further advantage of explicitly containing the dominant QBOs, together
with the less important QBO, which function as modifiers to the dominant
QBOs to account for the molecular environment. Thereby, the rigorous AO
bases remain no longer purely numerical devices, but become useful
vehicles also for physically'meaningful analyses of molecular wave-
functions - a goal that often seems to have been abandoned in commonly
used ab initio bases (Dunning and Hay, 1977).

Such analyses confirm again the dominant role played by the
principal QBOs and the reason for this dominance is readily understood

in terms of the variation principle. It is the fact that any occupation
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of the minimal-basis-set free-atom SCF AOs, even if only partial and

indirect (i.e., through being building blocks of MOs), will yield sub~-

stantially lower energy contributions than similar occupations of any

other ('promoted'') AOs that could be formulated. This conclusion remains

also valid when going beyond the Hartree-Fock approximation and, con-
sequently, it is to be expected that the electronic rearrangements
occurring during chemical reactions can be essentially (i.e., in zeroth
order) described as redistributions of electronic populations among the
principal valence shell QBOs while preserving the overall dominance of
this subset of basis orbitals. The surprisingly good results of the
early calculations with fixed minimal-basis-sets of Slater=-type AOs
(Schaefer and Harris, 1968) support this inference.

Unless otherwise specified, the molecular basis sets used for the
calculations described in this dissertation are of the Raffenetti-type
described above, taken from Schmidt and Ruedenberg (1979). The following
type of notation will be used to specify the basis: (14s,7p,2d/3s,2p,
2d). The portion before the slash gives the number of Gaussian primi-
tives (PAOs) used on a given atom, the part following the slash gives
the number of contracted functions (QBOs) formed from these primitives

according to the 'recipe'' given above.

C. The Full Optimized Reaction Space (FORS) Model
From the aforementioned 'persistent dominance'' of the principal
quantitative basis orbitals, the following fundamental conjecture, which
forms the basis for the concept of the ''Full Optimized Reaction Space

(FORS)", may be inferred:
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The number of dominant configuration-generating molecular

orbitals is at most equal to the number of formal minimal=-

basis-set atomic orbitals in the molecule.

Denoting this number by n, it is further postulated that meaningful
descriptions of molecular rearrangements are obtained by expressing the
electronic wavefunction in terms of n configuration-generating MOs (CGOs).
No assumptions are made as régards the form of the CGOs and as regards
the selection of configurations, except that the CGOs corresponding to
closed shells remain doubly occupied in all CSFs. The CGOs are expected
to be determined as expansions in terms of extended basis sets of
principal and secondary QBOs by means of an MCSCF procedure.

The most general full reaction space (FRS) is the full valence

space. Here it is only assumed that the CGOs describing inner shells
remain doubly occupied in all configurations and all remaining CGOs are
considered as ''reactive orbitals''. The FRS is then spanned by all pos-
sible configurations resulting from all possible couplings between the
reaction orbitals and using all possible spin couplings. It is apparent
that the inclusion of all valence configurations allows for a descrip-
tion of any possible electronic rearrangements associated with arbitrary
atomic rearrangements, including dissociations and atomizatipns, without
introducing any bias due to preconceptions or nescience. Under certain
conditions, there may exist valid reasons for anticipating that certain
CGOs can be chosen in such a manner, e.g., as lone pairs or bond
orbitals, that they remain essentially closed, i.e., doubly occupied,

during a specific reactive arrangement. In such cases, the number of
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persistent closed shells can be extended to include these CGOs and this

leads to a reduced full reaction space. In any event, the n CGOs of the

system are divided into ne closed core CGOs and MR reactive CGOs, and

the FRS is defined as ;he configuration space which is spanned by all
configurations which keep the ng core CGOs doubly occupied and couple the
Nn reactive CGOs in all possible ways, compatible with the overall space
and spin symmetry.

The configuration space which results when, for a specific molecular
geometry, the CGOs of the full reaction space (FRS) are MCSCF optimized,
is called the full optimized reaction space (FORS). This optimization
in an adequately large orbital variation space is essential. Those
orbitals in the orbital variation space which are orthogonal to the
optimal CGOs are called virtual or unoccupied FORS MOs.

From the described construction, it is apparent that the CGOs of
an FRS are not unique. This is so because the FRS is invariant with
respect to the following two kinds of unitary orbital transformations:

(i) transformations among the ne closed CGOs;

(ii) transformations among the nR reactive CGOs.

The former invariance is entirely analogous to that known for Hartree-
Fock wavefunctions and, in fact, leaves each configuration by itseif
invariant. The latter invariance gives rise to a unitary transformation
between the configurations constructed from the ''old" CGOs and those |
constructed from the "new'' CGOs. This flexibility in the choice of the
CGO0s is a valuable asset of the FRS, since it offers the possibility of
Yadapting' the CGOs to various computational or interpretative purposes,

a feature which will be examined in this and the following chapter.
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D. Molecular Wavefunctions and the ALIS Programs
For the molecular calculations reported here, the wavefunction is

chosen as a superposition of configurations

SM

SM
Kt 2Kt

> = § C
Kt

where each configuration ¢i¢ is chosen to be normalized spin-adapted
antisymmetrized product (SAAP) of CGOs. A SAAP is an N electron wave-

function of the form

SM . - SM,_ .
QKt(space,sptn) = N A{UK(Space)et (spin)}
SM ., . . . . 2
where et is a spin eigenfunction, S and M being the eigenvalues of S

-1/2

is a product of CGOs; A = (N!) b (-1)PP is the conven-

Z‘N(K)/Z

and Sz; UK

tional antisymmetrizer, and NK = with m(K) being the number of
doubly occupied CGOs in UK. Properties of SAAPs are described by
Ruedenberg (1971), Salmon, Cheung and Ruedenberg (1972), and Ruedenberg
and Poshusta (1972). |In cases of sufficiently high spatial symmetry,
certain fixed combinations of SAAPs can be chosen as configuration state
functions (CSFs). The molecular wavefunction is obtained by a multicon-
figuration self-consistent-field (MCSCF) calculation, that is the energy
functional is minimized with respect to the superposition coefficients

C,, and the expansion of the CGOs in the QBO basis. Occasionally, only

Kt
the superposition coefficients are optimized, with the CGOs held
invariant; this type of wavefunction is known as a configuration inter-

action (Cl) wavefunction. In the special case that only one configura-

tion is used, so that only the QBO expansion of the CGOs need be
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optimized, the wavefunction is referred to as the self-consistent-field
(SCF) type.

The molecular calculations detailed here were all performed using
the ALIS (Ames Laboratory-lowa State) computer program system. The ALIS
system contains a version of Raffenetti's (1973) BIGGMOLI program for
generation of integrals over generally contracted QBOs; an integral
transformation program by Elbert (1978), and an MCSCF program based on
the Brillouin~-Levy=-Berthier theorem described by Ruedenberg, Cheung
and Elbert (1979). The ALIS system is a very powerful tool for modern
quantum mechanical investigation of reaction pathways of small molecules,
and is now in worldwide usage. A number of other programs were used to
draw orbital contour plots, obtain localized orbitals, or compute

molecular properties.

E. Examples: Diatomics with Small Full Reaction Spaces
As a first example, consider the 12; ground state of Liz. The
formal minimal basis set consists of the 1s, 2s, 2px, 2py, 2pz AOs on

both atoms so that ne = 2 and nR = 8. In symmetry-adapted form, the

CGOs are:
closed CGOs: 1o_, 1o ;
g u
reaction CGOs: Zog, 309, 20u, 30u, ﬂxu, ﬂxg, nyu, nyg

\ +
From them, ten SAAPs can be constructed which possess lzg symmetry.

They are

2
|20§>, |30§>, |2093ag>, |wx5>, I"Vu> ,
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2
|Zcﬁ>, |3uu>, ]20u30u>, |wx§>, |wy:> ,

where |¢2> and |[¢p> are defined by

I

p~3/2 A{loglcﬁgbz[(as - a)/vZ]%}

2
g

o> = 27 Al1o10%0uT (a8 - Ba)/vE)3)

' + . . .
For 12 symmetry, the wxz and nyz configurations must occur with equal
coefficients so that they can be combined to the two configuration

state functions (CSFs)

2>

]

{|1rxu2> + |1ry§>}//2— ,

|n2>
g

{ |1sz> + ]ny;>}//§'
Furthermore, because of the invariance of the FORS space, it is possible
to choose the natural orbitals of the resulting wavefunction as CGOs.
Since there are only two open shell electrons, transformation to these
""natural reaction orbitals (NROs)'" will annihilate the contributions of
|2093cg> and [20u30u> to this wavefunction. Since the CGOs are going
to be MCSCF-optimized, these two off-diagonal SAAPs can, therefore, be
omitted from the start and, thus, the FORS space is actually only six
dimensional.

For infinite separation, the wavefunction assumes the asymptotic

form ¥ = {|20§> - |20§>}//f. Here the invariance of the FRS can be used

to introduce the ''localized reaction orbitals (LROs)"



19

10, (wg + 1cu)//'Z log (1cg - 1ou)//2_

20

(209 + 20u)//2‘ 20 (209 - 20u)//2_

A B

Using them as CGOs, one can transform the asymptotic wavefunction into

the form

2
B

&
|

2”1 A{1o§ 1o 20, ZoB[(aB - Ba)//f]B}

(27! AL(10,0) (10,8) (20,0) (10ga) (1a48) (2048)}
- 27 A{(10,a) (10,8) (20,8) (1050) (10,8) (2050) }1/v2

At infinity, the localized CGOs become the atomic 1s and 2s SCF AOs,
i.e., 10A, 10B, ZoA, ZoB become identical with the principal QBOs lsA,
ZSA, 158, 258’ and it is readily seen that the energy of ¥ becomes the
sum of the atomic SCF energies. This is not always the case, however;
an atom may dissociate into a two configuration wavefunction of the type
Clszpn + Czsopn+2, if n <b. This is a common situation for atoms such
as beryllium, boron, or carbon.

An MCSCF optimization at the experimental bond length of 5.07 bohr,
using a (12s,3p,1d/6s,3p,1d) Raffenetti-type QBO basis in this FORS space
ylelded an energy of -14.9006 h (h = one Hartree), can be compared with
the SCF result of -14.8712 h and an SCF energy for two lithium atoms of
-14.8651 h. Thus, this calculation improves the binding energy from
the SCF value of 0.17 eV to the FORS value of 0.97 eV, within 1.8 Kcal/

mole of the experimental value of 1.07 eV. Moreover, the FORS calcula-

tion connects Li2 and 2Li by a good dissociation curve.
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As a second example, consider the 32_ ground state of NH, imidogen.
Here the minimal basis consists of the 1s, 2s, 2px, 2py, and 2pz orbitals
of nitrogen, and the 1s orbital of hydrogen. Only the nitrogen 1s is a

core orbital so that, in Cmv notation, the CGOs are:

closed CGO0s: 1o 5

reaction CGOs: 20, 30, lo, lnx, 1ny

From these, nine 32- SAAPs containing eight electrons, can be constructed:

102 202 302 1w1 1w ©
X 1

g —

102 202 402 lwl 1w1 8

~<

2 2 1 1 1 1
16° 20° 30 4o lnx lny.e

102 302 hcz 1nl

—

Im 8

<
—_

102 202 301 hcl lwl 1

162 362 26 bg! 1wl i

< =

102 302 201 hc1 Iﬂl 1w

< -
w

-—

102 bcz 201 301 lwl L K

~<
—

2 2 1 1 1 1
16° bo” 20" 30 lwx 1wy 9

The first SAAP is the SCF configuration around Re» the first three SAAPs

are required for proper dissociation to the hS and 25 SCF ground states

of nitrogen and hydrogen. Note that the three space orbital products
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having four unpaired electrons are not combined with the overall triplet
Serber spin function 62, which singlet couples the second pair of singly
occupied orbitals to 1A symmetry, causing these SAAPs to possess an
overall symmetry of 3A.

Direct MCSCF optimization with a (14s,7p,2d/5s,3p,2d) QBO basis on
nitrogen and an unscaled (6s,2p/3s,2p) QBO basis on hydrogen to obtain
the FORS wavefunction at a variety of internuclear distances were
performed. The potential curves are shown in Fig. 2.1, along with the
SCF potential. It is apparent that the FORS curve, unlike the SCF curve,
treats the dissociation reaction NH - N + H correctly, at least qualita-
tively. Selected spectroscopic constants, obtained via Dunham analysis
with a program by Valtazanos (1980) are given in Table 2.1. The FORS
calculation recovers 40% of the error in the SCF bond energy (De), but
is still in error by 24.9 Kcal/mole.

As a final example of a diatomic with a small full reaction space,
consider Fz. F2 has the same CGOs as Liz. Where Li2 has two valence
shell electrons, F2 lacks two electrons of possessing a completely
filled valence shell. Exploiting this fact by using a 'hole' notation,

the full valence space SAAPs for F2 are:

- - —1 -
|30.5> |1rx92> 207" 307"

- -2 -1, -1
|3ogz> |nygz> |ch 309 > ,
|20;2> |nx-2>

u

|2092> |nyu2>
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I I | |
o
) (HARTREE) -
SCF
-54.92
-54.96 [~
-55.00 -
| 1 l |
2.0 4.0 6.0 8.0

Figure 2.1. Calculated potentials for the ground state of imidogen
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Table 2.1. Spectroscopic constants for x3z- NH

SCF FORS Experimenta
R, (R) 1.058 1.067 1.036
B (em™ 1) 16.0 15.7 16.7
0, (eV) 2.06 2.77 3.85 + 0.10°
o, (em™ ") 3180 3090 3282
W Xg (cm-]) --- 85 78.3
o (em™ 1) - 0.57 0.649

94uber and Herzberg (1979).

bPiper (1979).
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where the notation indicates which.two electrons are to be deleted from

the completely filled KKLL shell 1o§1oﬁZo§2o§3o§3c2n“nl‘ The first con-

uug'
figuration is the SCF configuration near Re; the first two are required
for proper dissociation into two SCF fluorine atoms. Just as for Liz,
the two SAAPs |20;130;1> and |20;]30;1> are eliminated by transformation
to natural orbitals, and the four m hole SAAPs combine to form two 1Z+
CSFs, so that the full valence space of F2 consists of 6 CSFs.

F2 is a rather famous example of the failings of SCF theory. Beyond
the normal circumstance that the diatomic SCF function does not dis-
sociate into a product of the two atomic SCF functions, SCF theory fails
to predict F2 as a bound molecule, as first noted by Wahl (1964). Using
a (14s,7p,2d/ks,3p,2d) QBO basis at the experimental equilibrium dis-
tance, the SCF energy is -198.764060 h, corresponding to a bond energy
of -1.40 eV, i.e., F, lies above 2F by 1.40 eV. MCSCF optimization of
the FRS SAAPs yields an energy of -198.844328 h, representing a bond
energy of 0.78 eV, and thus the satisfying conclusion that F2 is a
stable species. The FORS wavefunction removes 71% of the binding energy
error of thg SCF function, compared to the experimental value of 1.65 eV.
Moreover, the FORS wavefunction of F2 smoothly dissociates to two SCF

F atoms. However, the calculated FORS bond energy for F2 is in error

by 20.1 Kcal/mole.

F. Methodologies for Large Full Reaction Spaces
The results for the three singly sigma bonded diatomics discussed
in Section Il.E indicate the FORS model to be of some usefulness for

studying chemical reactions. When attempting to undertake such an
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investigation, however, one is immediately confronted with many more
configurations than for the simple systems thus far considered.

For diatomic molecules with s-p valence shells, the FRS generated
by distributing in all possible ways all valence electrons in all CGOs
which can be formed from all minimal basis set valence atomic orbitals
can contain several hundred SAAPs. For triatomics, this full valence
space can contain several thousand SAAPs; for ethylene, the full valence
space consists of 29,248 SAAPs. It is clearly possible to conceive of
full reaction spaces whose dimensions exceed the limitations of any
MCSCF procedure, because there is a limit to the number of configura-
tions that can be handled by any configuration interaction method, and
even more severe limits exist in this respect for MCSCF procedures. It
is, therefore, an important problem to establish reliable rules for
identifying in advance as many noncontributing configurations as
possible.

One method for significantly reducing the number of SAAPs has
already been presented in Section |1.C. A reduced FRS is obtained by
demanding that certain bonds and/or lone pairs which intuitively seem
to be uninvolved in a particular reaction remain doubly occupied. For
example, Cheung et al. (1979) were able to study the breaking of the
double bond in ethylene with a reduced FRS containing Just eight rather
than nearly 30,000 SAAPs by the simple expedient of requiring the four
CH bond orbitals to remain doubly occupied.

In general, it is not always possible to achieve a reduction in the

full reaction space to only a dozen or so SAAPs. More often than not,
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interesting chemical p?oblems require FRSs containing hundreds or
thousands of SAAPs, even after all uninvolved lone pairs and bonds have
been held to double occupancy. The MCSCF procedure used here can
optimize only tens of SAAPs, which precludes the direct optimization of

any FRS containing hundreds or thousands of SAAPs.

1. Optimization in a large FRS

Although it is not currently feasible to directly MCSCF optimize a
FRS containing hundreds or thousands of SAAPs, this number of SAAPs is
well within the reach of any configuration interaction (C!) procedure.
Dombek (1977) has detailed a method that combines CI calculations in
the FRS with a circumstance that eliminates the need for MCSCF optimiza-
tion in the entire FRS. It happens that the shapes of the optimal CGOs
depend only upon a relatively small number of leading configuratiéns in
the FRS. This is not to say that the remaining configurations are
irrelevant for the energy calculation. Typically, at least 30% of all
configuratiohs in the FRS are required to recover the energy of the
full CI calculation to within 0.1 millihartree. However, as a rule,
less than 3% will be needed to determine the optimal molecular orbitals.
To be precise: the energy obtained from the Cl calculation in the
entire FRS generated by the best possible MOs (i.e., the true FORS MOs)
will differ by less than a millihartree from the energy obtained by a
Cl calculation in the entire FRS generated from those orbitals which are
determined by means of an MCSCF calculation using only the leading 3% of
all configurations. In practice, this almost always means less than

twenty configurations are required for any MCSCF calculation.
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Thus, MCSCF calculations are possible for very large reaction
spacés, if it is possible to ascertain the dominant configuration§. How
is it possible to identify those before knowing the wavefunction which
is yet to be determined? The answer is: by the macro-iterative
approach of Dombek (1977).

Assume that one has an approximation to the optimal set of CGOs of
a large full reaction space. Methods for obtaining such initial CGOs
are discussed in the following subsections. These CGOs can be improved
by the following two-step macro=-iteration:

(i) a) A CI calculation is performed in the FRS spanned by these

CGOs;

b) The symmetry-adapted natural orbitals of the C! wavefunction
are determined;

c) The Cl wavefunction is expressed in terms of NO-based con-
figurations (i.e., configurations generated from the
natural orbitals);

(i1) a) The leading NO-based configurations are selected from the

expansion established under (i) c);

b) An MCSCF calculation is performed using these leading con-
figurations to get improved CGOs.

The number and selection of the leading NO-based configurations for the
MCSCF step depends on the coefficients of the NO-based C! expansion.
Appropriately this number should be increased from one macro-iteration

to another corresponding to the increasing refinement of the CGOs. These

two-step macro-iterations are repeated until self-consistency is achieved
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according to the following three convergence criteria:

(i) sStability of the Cl energy in the full reaction space;

(i) Stability of the NO-based C! expansions in the full reaction
space as regards the order of the NO-based configurations and
the values of the coefficients of these configurations;

(i11) Lack of change in the CGOs resulting from the MCSCF step.
Normally, convergence is attained after three macro-iterations involving
two MCSCF steps, the first typically involving between five and ten con-
figurations and the second involving between ten and twenty configura-
tions. The MCSCF energies are clearly unsuited for monitoring the
macro-iterative convergence.

The transformations to natural orbitals are necessary in order to
be consistent in performing step (ii) a) of the macro-iterations and in
applying the convergence criterion (ii). This is because, in general,
the CGOs resulting from any one MCSCF step are not identical with the
natural orbitals from that MCSCF wavefunction and, moreover, the number
of leading configurations normally varies from one macro-iteration to
another. Because of the invariance of the full reaction space under
orbital transformation, convergence cannot be monitored for the
coefficients of the Cl expansions when the configurations are generated
directly with the CGOs from the MCSCF step.

Orbital optimizations can also be simplified in other ways. There
is no molecule (except HZ) in which it is not possible to divide the
CGOs in groups such that there is only little coupling between the

orbital optimizations in different groups. The efficiency of the MCSCF
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process is substantially increased if, at first, orbital optimizations
are performed separately in each group, freezing the orbitals in the
other groups. Usually the final total MCSCF calculation will then con-
verge in two iterations. Similarly, the efficiency of the MCSCF process
is increased if orbital optimizations are performed first for a small
basis of QBOs, to obtain excellent starting CGOs for the MCSCF calcula-
tion with a very large number of basis orbitals. A wise optimization
strategy not only yields substantial savings in computer usage, but also
furnishes valuable insights into the interactions that exist between
various orbitals and configurations in a molecule.

It must be reemphasized that, even though the described MCSCF
steps are very adequate to determine the optimal MOs, the energy must
be calculated to the accuracy of the full reaction space in order to
obtain reliably changes on energy surfaces for chemical reactions.
Experience has shown that there exists no justifiable selection of a
small number of configurations, such as 3% of the FRS, to represent a
system without energy bias. Moreover, the leading configurations
usually vary significantly along the reaction path. Retaining the
entire FRS in the Cl steps of the above macro-iteratfve procedure
ensures that the leading configurations will always be found at any

given point on the molecular potential energy surface.

2. Obtaining initial CGOs

The macro-iterative procedure of Dombek (1977) just outlined
assumes that a reasonably accurate initial choice of CGOs is available.

Practically speaking, poor convergence of Dombek's method is almost
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always attributable to the lack of adequate starting orbitals. Conse-
quently, one should make every effort to obtain the best possible
starting CGOs.

In cases where a preliminary SCF calculation is feasible, a quite
general procedure suggested by Sundberg and applied by Dombek (1977)
can be abplied. The gccupied SCF MOs are taken as a zeroth order
approximation for some of the FRS CGOs. However, since in general,
there exist more CGOs in the FRS than there are occupied SCF MOs,
additional zeroth order CGOs which lie in the virtual SCF space must be
found. The lowest SCF virtual MOs are usually poor choices for these
additional CGOs, due to their great spatial diffuseness. Instead, the
necessary additional CGOs are obtained as follows. A few additional
configurations are chosen which, fbr intuitive reasons, can be expected
to contribute substantial contributions (typically double excitatipns
providing left-right correlations in bonding MOs), just enough so that
every CGO occurs in at least one configuration. Then, an MCSCF calcula-
tion is performed for a wavefunction consisting of the SCF configuration
plus the newly chosen configurations, with the occupied SCF MOs frozen,
i.e., only the additional CGOs in the virtual SCF space are optimized.
This "frozen orbital" preliminary MCSCF calculation yields the desired
full set of initial CGOs. A straight Cl calculation with these initial
CGOs will furnish the approximate wavefunction in the FRS from which the

natural orbitals can be determined and the macro-iterative optimization

in the FRS begun.
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This technique of an SCF calculation followed by a ”frozén orbital"
MCSCF to generate starting CGOs for the macro-iterative optimization of
the FRS is completely general, and was routinely applied in the calcula-
tions desEribed below. The method assumes nothing about the structure
of the FRS; it may be applied to any reduced FRS as readily as to a full
valence reaction space.

It is worth noting that it is not necessary for the initial SCF
wavefunction, on which the just described procedures are based, to have
proper spatial and spin symmetry, even though the MOs must. This is so
because the determination of molecular orbitals is the only objective
of these preliminary calculations, Thus, any SCF calculation which con-
verges is adequate, not necessarily one on the electronic state whose
FORS funcéion is sought. For example, a closed shell calculatiop may
he performed in lieu of one with two unpaired electrons. It may be
helpful to carry out the SCF calculation on the singly positive ion as
this tends to generate more compact virtual orbitals.

An effective means of determining better virtual orbitals for
initiating the '"frozen orbital' MCSCF is to generate the modified virtual
orbitals (MVOs) of Bauschlicher (1980). MV0Os are obtained by deleting
about five or so electrons from the converged SCF orbitals, and
diagonalizing within the virtual orbital subspace the Fock operator cor-
responding to this highly positive ion. The lowest virtuals are ''drawn
in'"' to the region of the molecule inhabited by the valence MOs whose
electrons were deleted. Thus, the expense of one SCF iteration generates

MVOs which can save one or more iterations during a subsequent MCSCF
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run. As an MCSCF cycle can easily be ten times longer than an SCF
cycle, the savings are apparent. .

Convergence difficulties are a common occurrence in MCSCF calcula-
tions. An inappropriate initial guess for the weakly occupied cor-
relating orbitals can preclude convergence. Another common difficulty
in optimizing a reduced FRS is the scrambling of bonds and lone pairs
in the delocalized canonical SCF MOs. Localizing the canonical MOs,
say, into a bond orbital which is to be correlated and a bond and a lone
pair which are to remain doubly occupied could substantially improve
convergence over letting this localization occur during the MCSCF cycles.
Poor convergence can also be attributed to poor selection of configura-
tions rather than poor starting orbitals. A wavefunction that contains
mainly singly excited configurations usually converges slowly; the
addition of a few sensible double excitations can effect convergence in
only a few iterations. A final source of difficulty is an ill-conceived
full reaction space. For example, a single orbital cannot be expected
to correlate two different bonds., If this is attempted, the MCSCF
cycles will oscillate wildly; in one cyclie one bond is correlated, in
the next cycle the other bond. Adding a second correlating orbital to
the CGO set, thus expanding the FRS, will immediately bring convergence.

A FORS function for any particular molecule can perhaps be obtained
readily, or perhaps with some difficulty. When encountered, poor con- |
vergence can be met by a cleverer choice of initial orbitals, wiser
selection of configurations, or a more appropriate FRS, MCSCF calcula-

tions in general, and FORS calculations in particular, require a
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theorist willing to think through convergence problems instead of just

allowing Eany more expensive MCSCF cycles.

3. An alternative choice of initial CG0s: the atomic MBS

In introducing the FORS model in Section |1.C, the number of
molecular orbitals, or CGOs, in the full valence space was chosen equal
to the number of formal minimal basis set (MBS) AOs on all atoms in the
molecule. This is so because the low lying molecular orbitals (higher
occupied and lower unoccupied) from which effective configurations are
to be formed are expected to be bonding and antibonding combinations of
these MBS AOs. As a consequence, one would expect the full valence
space spanned by the configurations generated from the minimal basis set
of these free-atom SCF AOs to be quite similar to the Full Optimized
Reaction Space of the molecule. Indeed, this turns out to be true and
it proves to be useful because, for a minimal basis set, the orbital
reaction space is identical with the orbital variation space and, hence,
the optimal wavefunction in this approximate space can be obtained

without orbital optimization by a straight C! calculation. Because of

the approximate nature of such a preliminary analysis, it is desirable
to choose as an orbital basis CGOs which lead to as clear a separation
into strongly and weakly contributing configurations as possible. The
weights of the dominant configurations will then be predicted with
higher relative accuracy than those of the weak configurations. In
general, natural orbitals are known to yield configuration expansions

which have such a ''compact'' character.
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Thus, excellent apprqximations to the FORS NOs and to the weights
of the configurations based on FORS NOs can be obtained in advance of
the macro-iterative optimization of the FRS by performing a straight CI
calculation in the FRS generated by the principal QBOs, i.e., the atomic
MBS, then finding the natural reaction orbitals of the resulting wave-
function, and finally repeating the Cl calculation in terms of FRS con-
figurations constructed from these natural orbitals.

When performing this kind of calculation, henceforth designated a
MBS FRS Cl calculation, it is necessary first to construct, from the
principal QBOs, a basis of orthogonal approximate CGOs for the closed
core space and for the reactive CGO space. Similarly, an orthogonal
orbital basis for the corresponding virtual space can be constructed
from the secondary QBOs. This is accomplished as follows. First, the
inner shell QBOs are mutually orthogonalized to form the approximate
closed core basis. Then the principal valence QBOs are Schmidt
orthogonalized to the closed core orbitals just formed and then mutually
orthogonalized to form the approximate basis of the reactive orbital
space. Finally, the secondary QBOs are Schmidt orthogonalized to both
the closed core and the reactive orbital space and then mutually
orthogonalized to form a basis for the virtual space. (The latter is
done with a view to subsequent calculations with the extended basis.)

This means of preparing starting CGOs for optimization of a full
valence space-type wavefunction is easily implemented when Raffenetti-
type bases are used. These bases, as described in Section 11.B above,

contain explicit core, valence, and virtual QBOs. Linear combinations
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of these QBOs that are symmetry adapted to the molecular point group are
easily formed. These linear combinations serve to span the initial

. core, valence, and virtual CGO spaces, and must be orthogonalized as
described above. A generalization that produces starting CGOs for a
reduced FRS is presented elsewhere by Ruedenberg et al. (1982).

The major advantage of using the MBS FRS Cl natural orbitals as
starting CGOs is that the MBS Cl| expansion, after transformation to
natural orbitals, is quite similar to that of the optimized wavefunction
in the FRS, expressed in terms of the optimized natural orbitals. Thus,
before commencing the macro-iterative.optimizations, the dominant con-
figurations in the final optimized wavefunction are known, and can be
immediately used in the MCSCF orbital optimization steps. In addition,
the MBS FRS C| natural orbitals are adequate initial guesses for all
CGOs, since as many MBS AOs as there are CGOs in the full valence space,
by definition. |In contrast, the starting CGOs obtained form an SCF
calculation in the extended basis set give good approximations to the
heavily occupied final CGOs, but rather poor approximations to the weakly
occupied final CGOs. Lastly, since the procedure is described here for
the most general FRS possible, the full valence space, there is no pos-
sibility of mistakenly working in an overly restricted FRS. Thus, the
MBS FRS Cl| approach addresses the three major sources of convergence

difficulties mentioned at the end of Section |I.F.2.

4, 1llustration of the MBS FRS Cl alternative: Fo

As an example of using natural orbitals from a Cl calculation in

the FRS spanned by taking the MBS atomic orbitals as CGOs, consider
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again the F2 molecule. The optimized full valence space wavefunction for
F2 was described in Section |I.E above. Here the use of MBS FRS ClI
natural orbitals is illustrated for F2. Denoting atomic orbitals on the
left or right fluorine as L or R, the core CGOs are taken as IGg = 15L +
1s, and 1ou = lsL -~ 1s,. The valence shell CGOs are taken as

R R
20g = ZsL + ZsR, 309 = 2sz + 2sz, 20u = ZsL - ZsR, 30u = 2sz - 2sz,

mX
u

mxs. A Cl In the FRS with these CGOs, after orthogonalization, yields

PX_ *+ PXps and wxg = PX_ = PXp- The my CGOs are analogous to the

natural orbitals, for which the 209/30g and Zcu/3ou natural orbitals are
mixtures of the originally pure 2s or 2pz 209/30g and 20u/3cu CGOs. A
second C| in the FRS with these natural orbitals yields the expansion
shown in Table 2.2 along with the optimal natural orbital based
expansion.

The economically generated MBS FRS Cl expansion is strikingly
similar to the optimized FORS expansion. Clearly, the MBS FRS CI cal-
culation correctly predicts those configurations which dominate the
optimal wavefunction in the FRS. Besides generating such an accurate Cl
expansion in the FRS, the MBS FRS Cl| natural orbitals are excellent
starting orbitals for the direct MCSCF optimization of this full valence
space; only four MCSCF iterations are required for convergence.

The first configuration in Table 2.2 is the SCF wavefunction which
corresponds to the standard bonding picture in terms of symmetry
orbitals, resulting in a single sigma bond. From the mixing coefficients
in the second column, it is seén to have a weight of 93.1% in the FORS

wavefunction. There is one secondary configuration, with a weight of
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Table 2.2. Mixing of configurations generated from natural orbitals in
F2 at the equilibrium distance

Configuration State Functions Configuration Mixing Coefficients

Excitation
Hole Description from SCF FORS MBS FRS CI
3032 SCF 0.965127 0.963282
-2 2 2
30 30, 30, 0.256618 0.262606
20;2 205 N 303 -0.025857  -0.016167
-2 2 2 } )
209 ch - 30u 0.015070 0.014130
20 130”1 20+ 30 0 0
u u u u
20;130;1 209309 > 305 0 0
(Trx;z + ny;Z)//E 'n: > 303 -0.040769  -0.046774
(nx;2 + wy:lz)//f nﬁ > 303 -0.010898 -0.006944
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6.6%, which corresponds to the left-right correlation in the sigma bond.
The remaining configurations, adding up to a total of 0.3%, describe

the other possible degeneracy-type correlations among the principal QBOs.
As noted in Section |1.E, the coefficients of the two cpnfigurations
with singly occupied orbitals are annihilated by transformation to
natural orbitals, and the m 'holes' must be combined as shown to obtain

5% csrs.
g

The effectiveness of the MBS FRS C! procedure derives from the fact
that the vector space spanned by the minimal basis set of the free atom
AOs has a very high overlap with the optimal orbital reaction space
spanned by the FORS CGOs. Quantitative demonstration of this overlap
will be given in Chapter Ill. In view of such very large overlap
values, it is justified to raise the question whether the minimal basis
set may not be adequate by itself, and whether the MCSCF calculation in
the orbital variation space of the extended basis may, therefore, not be
superfluous. The answer is provided by the results of the calculations
of F2 given in Table 2.3. It is seen that the relatively slight improve-
ments in the FORS MOs due to the extended basis makes a difference of
about 23 Kcal/mole in the energy, raises the correlation energy recovery
from 39% to 71% and is essential for obtaining binding of F2 in the FRS
approach., Thus, the energetic effect is substantial and of practical
consequence. This is presumably so because the orbital basis of the
principal QBOs, although being ''good' for the description of the
molecule, is even better for the separated atoms, for which it is, in

fact, optimal. Thus, there results a bias in favor of the separated
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Table 2.3. Energies for various F2 calculations

Type of Calculation Total Energy (h) Binding Energy (eV)
SCF = FORS of two F atoms -198.815576
SCF of F, molecule -198.764060 -1.40
MBS FRS CI of F2 -198.807886 -0.21
FORS MCSCF of FZ -198.844328 +0.78

Experimental +1.65
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atoms which léads to a binding energy that is too low and, moreover,
distorts the energy curve so severely that the equilibrium distance is
displaced outward by about 0.5 bohr for 'most diatomics. This explana-
tion is in agreement with the observation that minimal basis set Cl
calculations with Slater-type AOs, which are relatively poor for the
separated atoms as well as for the molecule, usuallyryield better
energy differences between the molecule and the separated atoms than do
minimal basis set Cl calculations with free-atom SCF AOs (Schaefer and
Harris, 1968).

As illustrated for FZ’ the MBS FRS C| wavefunction typically does
not recover as much correlation energy as optimization in the FRS does,
and the potential surfaces from such calculations are not particularly
parallel to the exact surfaces. These two reasons necessitate optimiza=

tion in the FRS, for which the MBS FRS Cl wavefunction is an excellent

starting point.

G. Examples: Diatomics with Large Full Reaction Spaces
As examples of optimization of a large full reaction space, consider

two triply bonded diatomics, CO and N2’ at their experimental equilib-
rium distances using rather extensive basis sets. Both molecules have
ten configuration generating orbitals (CGOs) arising from the Is, 2s,

and 2p orbitals of the constituent atoms and ten reactive electrons.

The only real difference in the structure of the FRS for these two
molecules is the absence of an inversion center in CO. CO and N2 are

chosen to illustrate the various techniques described in Section II,F

to optimize in a large FRS.
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In CO, the closed core consists of the (10) and (20) CGOs describing
the inner shells; the reactive CGOs are (30), (4ag), (50), (60); (1wx),
(2mx); (1my), (2my). Using ten reactive electrons, 316 SAAPs can be
constructed which can be combined to 176 CSFs of 1E+ syﬁmetry. This is
the full valence space which is chosen as the FRS. Upon dissociation in
the FRS, one obtains the SCF ground state of oxygen and a two-configura-
tion wavefunction of the form [a(szpz) + b(soph)] for the ground state
of carbon.

Starting orbitals are obtained by the MBS FRS €| method described
in Section [1.F.3. The entire calculation converges in 2 1/2 macro-
iterations involving two MCSCF calculations. Peftinent details of the
optimization are presented in Table 2.4. In the first macro-iteration,
the FRS CI| calculation is based on the principal QBOs. Casting the
resulting Cl expansion in terms of configurations based on natural
orbitals yields the type and order of configuration from which the six
SAAPs for the subsequent MCSCF calculations are deduced. In this MCSCF
calculation, the two core CGOs corresponding to the inner shells are kept'
frozen. In the second macro-iteration, the FRS Cl| is based on the CGOs
from the first MCSCF calculation and, from the natural-orbital-based
reexpansion of this Cl wavefunction, the 19 leading SAAPs are taken for
the second MCSCF calculation in which all CGOs (core and reactive) are
optimized. |t may be noted that the Cf energy of the first macro-
iteration (in the FRS generated by the principal QBOs) is about 3 eV
poorer than the SCF energy, which again illustrates the energetic

importance of the secondary QBOs. Nonetheless and in agreement with the
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Table 2.4, FORS calculations for CO and Nza

Results of FORS Calculation

Property SCF FORS EXP

Carbon Monoxideb

Energy (h) of C -37.6883 -37.7057

Energy (h) of 0 -74.8084 -74 .8084

Energy (h) of CO -112.7829 -112.9144

Binding energy (eV) 7.79 10.89 11.225

Dipole moment (Debye) +0.26 -0.30 -0.12
Nitrogen Molecule®

Energy (h) of N =54 4004 -54, 4004

Energy (h) of N -108.9853 -109.1337

Binding energy %eV) 5.01 9.06 9.90

Energies During lterative Process

Macro-iteration Step 1: FRS=CI Step 2: MCSCF

Carbon Monoxide
1 -112.6858 -112.8676 ( 6 SAAPs/5 iterations)
2 -112.9122 -112.9089 (19 SAAPs/2 iterations)
3 -112.9144

Nitrogen Molecule
1 ~108.9853 (SCF)
2 -109.0847 -109.0780 ( 8 SAAPs/k iterations)
3 -109.1180 -109.1222 (13 SAAPs/7 iterations)
i -109.1334 -109.1281 (19 SAAPs/3 iterations)
5 -109.1337 -109.1292 (23 SAAPs/t1 iteration)
6 -109.1337

¥Geometries: RCO = 2.13195, RN = 2,068 bohr.
. 2
beo basis: (14s,7p,2d/4s,3p,2d) d exponents SCF optimized in CO
from Feller and Ruedenberg (1979), 0.2567 and 1.001 for C, 0.1813 and
1.0643 for 0.

o CNZ basis: (l4s,7p,2d/5s,3p,2d) d exponents assumed as 0.2 and
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discussion in Section |I.F.3, the expansion of this Cl wavefunction in
terms of natural-orbital-based configurations is quite similar to the
analogous expansion of the final converged C! calculation, and its
natural orbitals are excellent starting CGOs for the first MCSCF
calculation,

In Nz, the closed core is spanned by the CGOs log and 1cu, while

u g g
number of possible SAAPs is 176 and they can be combined to 95 CSFs of

1Z+ symmetry. The FORS wavefunction dissociates into the SCF descrip-

the reactive CGOs are Zog, 309, Zou, 3cu; TX s TR MY s TY . The

tion of the ground states of the two nitrogen atoms.

The details of the N2 calculation are also shown in Table 2.4. For
this optimization, the starting CGOs were obtained from the SCF plus
"frozen orbital' MCSCF procedure described in Section Il.F.2. A pre-
liminary SCF calculation was followed by a preliminary MCSCF calculation
which was based on eight configurations selected from the NO-based
expansion of the Cl| calculation in the FRS spanned by the occupied and
the lowest three virtual SCF MOs. In this preliminary MCSCF calculation,
four CGOs were frozen and six were optimized. Subsequently, three
macro-iterations were carried through using 13, 19 and 23 configurations,
respectively. The final MCSCF calculation was uhnecessary; its object
was merely to demonstrate that the use of 23 configurations would not
alter the results obtained by using 19 configurations: the CGOs and the
FRS-C! energy remained indeed unchanged. In fact, the FRS-CI| energy

obtained with the CGOs from the 13 configuration MCSCF calculation is

already within 0.3 millihartree of the final FORS energy. By comparing
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the CO and N2 éalculations, It can be seen that the MBS FRS C! approach
gets more quickly into effective macro-iterations and eliminates the
need for orbital optimization prior to the first FRS-CI calculation.

From the results for bond strengths of CO and N2 given in Table 2.4,
it is apparent that the effectiveness of the FORS model is qualitatively
similar in these two isoelectronic molecules. It is interesting to
note, however, that this consistency depends on the consistent applica-
tion of the FORS concept, which demands the earlier mentioned two-
configuration wavefunction for the carbon atom. |[f instead the one-
configuration SCF approximation is used for the carbon atom, as is
mistakenly done by Kirby-Docken and Liu (1977), then the value 11.32 eV
is obtained for the dissociation energy of CO, which is larger than the
experimental value.

The binding energy is not the only molecular property which is
improved by the FORS wavefunction. Table 2.4 also contains dipole
moments for CO. The dipole moment of CO is an oft-quoted failure of
SCF theory, as first noted by Huo (1965). SCF theory predicts a small
positive dipole for CO, corresponding to c*0™. The FORS calculation
correctly predicts a small negative dipole, meaning a negative carbon.
The discrepancy between the FORS and experimental dipole is due to the
rapid change in the dipole moment with bond length. It is this large
dipole derivative that makes CO an intense infrared absorber. The FORS
moment is calculated at Re’ and the experimental moment is averaged over
the molecular vibration. Billingsley and Krauss (1974) found vibrational

averaging of their OVC function for CO slightly reduced the magnitude
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of their small negative moment, the same effect would be expected for the

FORS function.

H. Diatomics as a Test of the FORS Model

The crucial test for a chemical theory of molecular potential
energy surfaces is how well it predicts reaction energies. How accurate
are the calculated exo- or endoergicities? How accurate are the pre-
dicted barrier heights? Diatomics serve as excellent benchmarks for
such a theory. An accurate experimental dissociation energy, De’ that
is the reaction energy for AB Z A + B, is usually available for compari-
son. Only one molecular calculation, at the known equilibrium position,
Re’ need be performed to obtain the De predicted by the theory. The
atomic bases can be chosen large enough to approach the single particle
basis set limit, so that errors in the calculated De are attributable
to failings in the theory rather than the basis used to execute the
theory. Finally, diatomics are a stringent test of a theory's ability
to calculate the variations in electron correlation at different loca-
tions on the potential surface. Where the atoms typically have one or
more unpaired electrons in a high spin state, the diatoms are low spin
systems possessing newly paired electron bonds.

Accordingly, diatomics are presented here as a test of the accuracy
of the FORS model. Tables 2.5 through 2.9 contain a summary of SCF and
FORS calculations on all homonuclear and several important heteronuclear
diatomics of the second period. These tables draw, in part, on unpub-

lished calculations of Brenda Lam and David Feller, as indicated in

Table 2.5.
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Table 2.5. Synopsis of diatomic calculations

Diatomic Electronic Bond Distance® QBOb Calculation
Molecule State (bohr) Basis Set Performed by
Homonuclear:

Li, x22; 5.07 (12s,3p,1d/6s,3p,1d)  Schmidt

B, x32; 3.0047 (lhs,7p,2d/lis,3p,2d)d Lam
c, x'z; 2.579 (1k4s,7p,2d/bs,3p,2d)®  Lam
N, x‘z; 2.068 (14s,7p,2d/5s,3p,2d)®  Schmidt
0, x32; 2.2817 (145,7p,2d/hs,3p,2d)f Schmidt
F x‘z; 2.68 (1hs,7p,2d/4s,3p,2d) T schmidt
Heteronuclear:
cN 2zt 2.2144 (1hs,7p,2d/bs,3p,2d)9  Schmidt
BO x2z* 2.2762 (1h4s,7p,2d/ks,3p,2d)"  Lam
co x'g* 2.132 (1bs,7p,2d/bs,3p,2d) | Schmidt
NO x2n 2.1747 (14s,7p,2d/5s,3p,2d)d  Feller

FExperimental equilibrium distance from Huber and Herzberg (1979).

bAtomi; basis from Schmidt and Ruedenberg (1979). Polarization as
indicated,

€z, = 0.0678, 0.264, 1.03; tp = 0.275 SCF optimized In Li,.

Ly = 0.145, 0.913 assumed values.
eCD = 0.2, 1.0 assumed values.
ch = 0.5, 1.6 assumed values.
9: ) =10.3, 1.05 N: gy = 0.32, 1.12 assumed values.
hB: &y = 0.145, 0.913 O0: &y = 0.15, 1.1 assumed values.

C: Zp 0.2567, 1.001 O: &y = 0.1813, 1.0643 SCF optimized in
€O (Feller and Ruedenberg, 1979).

IN: tp = 0.257, 1.0 0: gp = 0.1809, 1.062 assumed values.
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The calculations described in this section are all on the ground
electronic states of the diatoms. To increase the number of molecules
surveyed, the calculations were only performed at the experimental
equilibrium distances. The minimum of the SCF potential often occurs at
a slightly smaller internuclear distance; FORS wavefunctions almost
inevitably yfeld somewhat elongated bonds. In either case, the calculated
dissociation energy would be increased only slightly by geometry optimiza-
tion. (These assertions are not true for the inflexibly contracted MBS
FRS CI calculations, see the discussion in Section II.F.4,)

All diatomic calculations described here are the same in spirit as
the Li2, F2, N2, and CO calculations discussed above. Two core CGOs
represent the atomic inner shells; eight reactive CGOs arising from the
atomic 2s and 2p shells are used to construct configurations correlating
each valence electron. The number of SAAPs required for these full
valence space calculations is shown in Table 2.7. The FORS space of
each diatomic considered dissociates to atomic ground states.

Accurate chemical predictions require the error in calculated bond
energies to be no more than kT, which at room temperature is 0.9 milli-
hartree, 0.025 eV, or 0.6 Kcal/mole. Roughly speaking, the error in a
calculated energy derives from two sources, namely from using a finite
number of configurations, and secondly, in the orbitals due to their
expansion in a finite basis. To ensure a valid test of a configurational
selection scheme such as the FORS model, the molecular basis sets used
ideally should approach the limit of completeness to within kT to

eliminate this second type of error.



48

The molecular basis sets, shown in Table 2.5, consist of atomic basis
sets involving extensive numbers of Gaussian primitives, contracted
flexibly (triple zeta or better), with at least two sets of polarization
functions. The atomic bases used approach the atomic limit to within
about kT; their errors vary monotonically from 0.1 millihartree for Li
to 1.6 millihartree for F (Schmidt and Ruedenberg, 1979). The molecular
basis sets, as shown in Table 2.6, have errors of about five to ten kT.
This error is estimated as the difference between the molecular SCF
functions calculated here and the results of SCF calculations using
optimized extensive Slater (exponential) type orbital bases. The errors
given in Table 2.6 are described as maxima because the possible small
improvements in the atomic bases presumably carry over into the diatom
and make no contribution to the calculated Des. The remainder of the
molecular error is from two causes, omission of an f polarization orbital
on atoms other than Li, and the lack of optimization of the d polariza-
tion orbitals. This residual error does contribute to increased Des,
so that the estimated basis errors in Table 2.6 should not be counted
against the FORS model.

The energies of the SCF and FORS wavefunctions are shown in Tables
2.6 and 2.7; respectively. These data are shown converted into dissocia-
tion energies in Table 2.8. It is apparent that the FORS dissociation
energies are much superior to the SCF values. A convenient measure of
the accuracy of a wavefunction is the percentage of ''molecular extra
correlation energy' recovered, that is, the percentage of the discrepancy

between SCF and actual dissociation energies. In most cases, the FORS



Table 2.6.

SCF calculations on diatomics

Diatomic Molecules SCF Atomic SCF® Molecular SCFb Maximum Basis Error®
Molecule Energy (hartree) Energy (hartree) Energy (hartree) (millihartree) (Kcal/mole)
(this work) (this work) (Viterature)
Homonuclear:
Li, -14.8712 -7.4326 -14.8715¢ 0.3 0.2
B, ~49.0874 -21.5289 -49.09093 3.5 2.2
C2 -75.4015 -37.6883 -75.4062 4.7 2.9
N, -108.9853 ~51 400k -108.9928¢ 7.5 5.7
0, ~149.6580 ~74.8084 ~149.6659° 7.9 5.0
F, ~198.7641 -99.4078 -198.7701¢ 6.0 3.8
Heteronuclear:
CN -92.2192 .. ~92.2232F 4.0 2.5
BO -99.5566 ---¢ -99.55559 -1l -0.7"
co ~112.7829 ---° -112.7892" 6 4.0
NO -129.2894 ---¢ -129.2953 3.7

9Calculated using a ihs,7p basis (12s for Li) from Schmidt and Ruedenberg (1979).

bLowest published energies, using extensive spdf STO basis sets.

CEstimated as column 2 minus column k.

dCade and Wahl (1974).

See text for discussion.



®See entries for the two corresponding homonuclear diatoms.
fGreen (1972a).
9cade and Huo (1975).

The data here indicate the BO wavefunction in reference g is about 5 millihartree above
the Hartree-Fock 1limit.

Tereen (1970).

jGreen (1972b).

0S
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Table 2.7. FORS calculations on diatomics

Diatomic Number of® Molecular FORS Atomic FORS
Molecule SAAPs Energy (hartree) Energy (hartree)
homonuclear:'
Li, 8 -14.9006 -7.4326
B2 136 -49.2171 -2“.5601b
c, 264 -75.6369 -37.7056°
N2 176 -109.1337 -54 . 4004
02 Ly -149.7631 -74.8084
F2 8 -198.8444 -99.4078
heteronuclear:
CN 616 -92.3708 ==
BO 616 -99.6780 ---C
co 316 =112.9144 ---¢
NO 252 -129.4055 --=€

8This is the dimension of the full valence space, i.e.,
all electrons correlated by all configurations built from all
valence orbitals. The number of va adapted CSFs is in
general smaller.

bThe ground states of these atoms have two CSF FORS func-
tions of the form as2pn + bsOp"*2, The FORS function of the

other atoms is the SCF function.

Csee the entries for the two corresponding homonuclear
diatoms.



Table 2.8. Diatomic dissociation eneréies

Diatomic De(SCF)a De(FORS)b De(experiment)c % Correlationd DZORS Error®
Molecule (eV) (ev) (eV) Recovered (Kcal/mole)
homonuclear:

Li 0.16 0.96 1.068 88 2.5
B2 0.81 2.64 3.08 81 10.1
Cy 0.68 6.14 6.32 97 k.1
N2 5.02 9.06 9.905 83 19.5
’ 02 1.12 3.98 5.213 70 28.4
Fy -1.40 0.78 1.658 71 20.2

heteronuclear:
CN 3.55 7.21 7.89 84 15.7
BO 5.97 8.42 8.40 101 -0.5
co 7.79 10.89 11.226 90 7.7
NO 2.19 5.35 6.615 71 29.2

81t is traditional to define this quantity as the atomic SCF energies minus the molecular

SCF energy. Note that the SCF atoms and molecule are not connected by a smooth potential
curve. =

bThe difference between the FORS atoms and molecule. These are connected by a smooth
curve.

CCalculated from data in Huber and Herzberg (1979) as De = Dg
+ 1/8 WY,

d

+ 1/2 wy ~ 1/h WeXe

100% x (De(FORS) - De(SCF))/(De(experiment) ~ De(SCF)).

eDe (experiment) - De(FORS).

4]
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wavefunction recovers 70-95% of this correlation error, which represents
a very substantial improvement over the SCF value. On the other hand,
the remaining error in the FORS bond energies is 5 to 30 Kcal/mole,
which is several times larger than the 2 to 5 Kcal/mole error attribut-
able to the basis set.

These residual errors in the FORS bond energies seem quite unsys-
tematic, except for two general trends. Except for BO, all calculated
FORS dissociation energies are too small. Also, as might be expected,
the FORS mode!l does relatively better when the number of valence
electrons is smaller than the number of valence orbitals. In Liz, which
has one electron pair and seven orbitals to correlate it, 88% of the
correlation error is recovered. In FZ’ which has seven pairs and one
correlating orbital, 71% is recovered. 0ddly enough, the variation in
the effectiveness of the FORS model for the iscelectronic pair CO and
N2 is not significantly different than for any other pair of diatoms.

Another important molecular property is the dipole moment. The
calculated SCF and FORS dipoles of the heteronuclear molecules are com-
pared to the experimental values in Table 2.9. In all cases, the FORS
values are an improvement over the SCF values, and are quite close to
the experimental values. As noted in Section II.G, failure to average
the calculated dipole over the molecular vibration is probably the
largest source of error in the FORS dipoles. For the ground vibrational
level, the averaged dipole o is obtained from the calculated dipole Mg

at R, by the formula (Raymonda, Muenter, Klemperer, 1970)
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Table 2.9. Diatomic dipole moments®

Diatomic Molecule SCF FORS Experimentb
CN 2.30 1.62 1.45  (ctN7)
BO 3.00 2.34 - (%)
co -0.26 0.30 0.122 (¢70%)
NO -0.31 0.24 0.159 (N"0")

311 values given in Debye units.

bHuber and Herzberg (1979).
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This vibrational averaging cannot be done without additional information
on the potential curve (we,ae) and the dipole derivative function
(du/dR).

The calculations reported here primarily serve to test the accuracy
of the FORS model. However, the ultimate goal of a theory is to make
predictions for unknown chemical properties. This is possible for BO,
which has received little experimental or theoretical attention. It is
clear from Table 2.6 that the Slater type orbital bases used in SCF
calculations by Cade and Huo (1975) are not as well-optimized as for the
other molecules. Except for BO, the FORS bond energies in Table 2.8
recover 70-95% of the correlation error, and some 84% for the isocelec~
tronic CN. It seems unlikely that the FORS model is any better for BO
than the other diatoms, and thus, that the experimental bond energy is
in error. Assuming the FORS wavefunction for BO recovers 85 * 10% of
the correlation energy, the predicted bond energy for BO is 8.85 + 0.3 eV.
This prediction is somewhat larger than the recent thermochemical deter-
mination of 8.44 + 0,12 eV by Uy and Drowart (1970). It should be
noted that the bond energy of BO has never been well-determined experi-
mentally; published values range from 7.4 to 9.2 eV. Finally, Table 2.9
gives the dipole for BO as 2.34D, probably accurate to *0.3D, for which

no experimental result is available.
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The FORS model underestimates bond energies for diatomics by five to
thirty Kcal/mole. This error is larger than can be attributed to the
basis sets used, and is a factor of ten larger than desired for reliable
chemical predictions. As noted, diatomics are.an extreme case of
changing correlation energy as the new bond or multiple bonds are formed.
In cases where the number of electron pairs does not change (e.g.,
closed shell reactants -+ closed shell products), the changes in electron
correlation are much less severe, and the performance of the FORS model
should be correspondingly better. In such situations, the FORS model

can be expected to yield chemical energy differences accurate to a few

Kecal/mole.
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I1l. ORBITAL ANALYSES OF FORS WAVEFUNCTIONS

A. Introduction

As shown in Chapter ||, the Full Optimized Reaction Space model was
introduced to obtain wavefunctions which describe electronic rearrange-
ments without bias along an entire chémical reaction pathway. A
second major advantage is that the FORS wavefunctions are invariant
under certain transformations of the occupied MOs. The usefulness of
this invariance for chemical interpretation of the wavefunction is the
subject of this chapter.

The FORS wavefunction is invariant against two types of transforma=-
tions, namely an arbitrary orthogonal transformation of the core, or
doubly occupied orbitals, and an arbitrary orthogonal transformation of
the reactive, or partially occupied valence orbitals. There are, thus,
an infinite number of orbitals from which the same FORS wavefunction can
be constructed, and a number of these orbital choices afford valuable
chemical insight into bonding and other aspects of electronic structure.

Within the closed core orbital space are localized orbitals or
canonical orbitals. The choices for the reactive orbitals are more
numerous, and rather more interesting. Natural reaction orbitals yield
the most compact FORS function possible. A new projection scheme yields
molecular orbitals that are almost entirely localized onto one or another
atom of the molecule and, therefore, furnish an unambiguous atomic
population analysis. Appropriate compromises between these localized

orbitals and the delocalized natural orbitals can be found to illustrate
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various features of the chemical binding. These latter sets are termed
chemically adapted orbitals.

In the next four sections, the manner in which the invariance of
the closed core and reactive valence orbitals can be exploited is con-
sidered in detail. In the following section, some of the various orbital
types are illustrated for some of the diatomic wavefunctions given in
Chapter Il, and chemical interpretation given. In the final section,
the FORS orbitals are used to reexamine and confirm the definition of

the FORS wavefunction.

B. lInvariance of the Core Orbital Space
The invariance of each SAAP against orthogonal transformations
among the closed core CGOs derives from the fact that these orbitals all
have identical occupation numbers (i.e., 2), which leads to a core
degeneracy of the first-order density matrix so that the natural orbitals

for the core are not unique.

1. Canonical core CGOs

As in the analogous case of the restricted HF-SCF approximation,
there exists a single Fock operator for all core CGOs and thus canonical

core CGOs can be obtained by diagonalizing this core Fock operator FC’

given by

- c - R -

where the sums go over the core or reactive orbitals as indicated; h, C,

and K are the usual one electron Hamiltonian, and two electron Coulomb
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and exchange operators, and p is the bond order, or density matrix. A
derivation of this operator is given by Das and Wah! (1966).

The formation of canonical core CGOs has the effect of separating
the inner shell core MOs from those valence MOs'which are included in
the closed core. (These two types of MOs can get arbitrarily mixed by
MCSCF optimizations.) The separation of inner shell and valence core
MOs is important for conceptual interpretations as well as for computa-
tional refinements, such as following the FORS optimization with a Cli

calculation including excitations from these higher energy ''core'' MOs.

2. Localized core CGOs

On the other hand, the closed shell CGOs may be localized according
to standard techniques, such as the Edmiston-Ruedenberg (1963, 1965,
1971) or the Foster-Boys (1960) methods. Such localization yields
atomic inner shell MOs as well as those atomic lone pair MOs and
localized bond MOs which are '"unaffected' by the reaction and for this
reason were included in the closed core, in order to reduce the dimen=-
sion of the full reaction space.

In the case where the full valence space is used, the localized
atomic inner shell MOs can also be obtained by the projection method to

be defined in the next section.

€. Invariance of the Reactive Orbital Space
The invariance of the full reaction space (FRS) against transforma-
tions among the reactive CGOs derives from the fact that all possible

configurations involving the CGOs are included in the FRS. An orthogonal
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transformation among the reactive CGOs does not leave the individual

configurations invariant, but it induces an orthogonal transformation

among all configurations spanning the FRS. The FRS as an entity is

thus invariant to arbitrary transformations of the reactive orbitals.

1. Natural reaction orbitals

A CGO set of particular interest is the one which furnishes the
most compact and succinct characterization of the molecular wavefunc-
tions, a goal which may be identified with the most compact orbital
expansion of the first order density kernel. The CGOs which accomplish
this objective are the natural reaction orbitals (NROs) (Lowdin, 1955),
obtained by diagonalizing the first order density matrix in the space of
the reactive CGOs. This diagonalization tends to extremize the eigen-
values of the density matrix, which are the orbital occupations. For
closed shell molecules near their equilibrium geometry, this separates
the natural orbitals into those which are nearly doubly occupied and
those which are largely vacant. Molecules with unpaired electrons will
also have NOs with occupancies near one.

It is this separation of the orbitals into dominant (approximately
singly or doubly occupied) orbitals and secondary (nearly zero occupa-
tion) correlating orbitals that causes the FORS wavefunction expressed
in the NO basis to be the most compact form. As noted in Chapter It,
this compactness facilitates the choice of a small number of configura-
tions to be used during the MCSCF orbital optimization steps.

For nuclear geometries away from the equilibrium positions of

reactants or products, i.e., near transition states, the occupations can
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assume any value from zero to two, and the NO based FORS expansions are
then somewhat less compact than at the equilibrium positions. Obtaining
the FORS wavefunction at a transition state is only marginally more dif-
ficult than at the equilibrium position (a few more configurations are
needed in the MCSCF orbital optimization). This is in sharp contrast to
experimental chemical methods, where fleeting intermediates are virtually

inaccessible.

2. Localized reaction orbitals

The reactive valence orbitals, that is, those with occupancies less
than two, may be localized according to any intrinsic criterion, such as
the maximization of the sum of the orbital self energies (Edmiston and
Ruedenberg (1963, 1965)) or minimizing the sum of the squares of
orbital dipoles (Foster and Boys (1960)). Mormally these localization
criteria are applied to the doubly occupied orbitals of an SCF function,
whose single configuration is invariant to such localization. Here the
localization can be applied to any or all the reactive orbitals, which
are not doubly occupied, since the total FORS wavefunction is invariant
to this localization. The resulting localized orbitals are termed
localized reaction orbitals (LROs).

It is apparent that localized reaction orbitals usually do not
belong to irreducible representations of the molecular symmetry group.
Therefore, the number of SAAPs constructed from LROs, which are required
to span the full configurational reaction space, is usually larger than
the number of SAAPs constructed from symmetry-adapted CGOs required to

span the FRS. For a molecule of average symmetry (say CZV)’ this can
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increése the number of SAAPs in the FORS function by a factor of ten.
Calculation of the FORS wavefunction based on LROs rather than symmetry-
adapted orbitals such as the NROs requires correspondingly greater com-
puter resources. The major usefulness of LROs is, therefore, interpre-
tive rather than computational.

Fortunately, the bond order (first order density) matrix for the
LROs can be obtained without recalculating the FORS wavefunction. Given

the orthogonal transformation T from any initial symmetry adapted MOs ¢

to the LROs ¢

o= T (3.2)
the bond order matrix over the LROs is calculated by

Wty (3.3)

A convenient choice of initial symmetry orbitals for the localization
are the above mentioned NROs, for which y¢ is diagonal. The diagonal
elements of yw are the electron occupations of the LROs; the offdiagonal
elements are related to bonding or antibonding effects between any pair
of LROs.
Upon localizing the reactive CGOs of a FORS wavefunction, one
nearly always obtains localized CGOs with the following characteristics:
(i) Each LRO is nearly completely localized on one atom, and the
orthogonalizing tails on the neighboring atoms are extremely
small; and
(i7) The number of LROs on any one atom is equal to the number of

principal QBOs, i.e., of formal minimal basis set AOs on that
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atom, which weré included in determining the total number of
reactive CGOs.
The latter characteristic is a consequence of, and confirmation for, the.
definition of the FORS wavefunction. The first characteristic means
LROs are ideal vehicles for demonstrating atomic participation in
molecular wavefunctions.

Consider the simple FORS wavefunction describing a single sigma
bond. Upon MCSCF optimization of the two CGOs, one obtains a NRO with
nearly double occupancy, corresponding to the sigma bond, and a just
barely occupied NRO, which is a sigma antibond correlating the bond
pair. Upon localization of these two NROs, one obtains a single orbital
on each atom, directed toward the other atom. Each orbital will have an
occupation of about one, indicating each atom contributes a single
electron to the bond pair. Furthermore, the offdiagonal bond order
matrix element will be a large positive number, indicating strong bonding
between the atoms.

In general, the FORS wavefunction correlates more than one electron
pair, so that after localization each atom in the molecule will possess
motre than one LRO. These LROs will generally not be readily interpreted
as lone pairs, bond orbitals, etc. However, LROs having these inter-
pretations can be found as transformations among the orbitals on any
one atom preserve the localization onto that atom. A first step toward
finding such LROs is to diagonalize the atomic submatrices of the bond
order matrix. This diagonalization will produce on each atom three pos-

sible types of ""atomic natural orbitals'': nearly doubly occupied LROs
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which are interpreted as lone pairs, nearly singly occupied orbitals
which are involved in bonding, and occasionally, in the case of electron
deficiency, nearly vacant LROs. Finally, when an atom participates in
two or nmore bonds, it may well happen that the two or more singly
occupied LROs obtained by the diagonalization of the interatomic density
matrix do not point in the directions of the atoms to which it is bonded.
This direction into bonds can be accomplished by further transformation
of only the singly occupied orbitals on any one atom so as to maximize
certain offdiagonal elements of the interatomic bond order matrix.

LROs which have been somehow localized onto atems and then subjected
to transformations on each atom to obtain lone pairs, and orbitals
directed into bonds are termed directed localized reaction orbitals
(DLROs). A beautiful illustration of the DLROs involved in the HNO-HON
isomerization is given by Dombek (1977). DLROs generally look like
hybrid atomic orbitals, for example, in methane, the DLROs would
correspond to an s orbital on each hydrogen and four equivalent sp
hybrids on the central carbon. As such, the DLROs reveal how the con-
stituent atoms participate in molecular bonding.

To maintain its orthogonality to the other LROs, each LRO possesses
a small antibonding ''tail" on adjacent atoms. Since these tails are
small, it seems reasonable to assign the electron occupancy (diagonal
element of the bond order matrix) of the LRO entirely to the atom on
which the LRO principally resides. Summing over all LROs on an atom gives
an unambiguous measure of the number of electrons populating that atom

in the molecular wavefunction, a useful quantity in discussing charge
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transfer. These population numbers are free of the limitations
associated with the Mulliken (1955) population analysis, which requires
the arbitrary partitioning of overlap populations between nonorthogonal

atomic basis orbitals.

D. Projected Localized Orbitals

The localized core and reactive orbitals discussed above are
obtained in two steps, namely localization onto the atoms, then trans-
formations among the reactive orbitals on the same atom. The first step
can be accomplished according to some criterion involving an intrinsic
property of the orbitals, such as maximizing the self-energy sum in the
Edmiston-Ruedenberg (1963, 1965) procedure. It is possible to achieve
this initial localization onto atoms according to an extensive criterion;
that the localized orbitals resemble as far as possible the basis
orbitals located on that atom. The procedure serves to localize the
core, reactive, and virtual MOs, requires only the overlap integrals for
the atomic basis, and uses only seconds of computer time-orders of
magnitude less than an energy localization.

The localization is accomplished by projection of the atomic basis
orbitals onto the core, reactive, or virtual orbital subspaces of the
FORS orbital space. The orbitals which result from the projection
process are termed projected localized orbitals, and are of three types:
projected localized core, reactive, or virtual orbitals (PLCOs, PLROs,
PLVOs). The projection procedure is given here only for the case of the
Full Valence Space type FORS wavefunction, where the reactive MOs are

equal in number to the atomic valence shell orbitals. A possible
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generalization to the situation where some valence MOs are incorporated
into the core orbital subspace to achieve a FRS containing a reduced
number of configurations is presented elsewhere (Ruedenberg, Schmidt

and Gilbert, 1982).

Following optimization of the FRS, the molecular orbitals ¢ have a

known expansion in the atomic orbital basis ¥,

¢ = xC . (3.4)

Here ¢ and yx are row vectors, and the AOs have a known overlap matrix,

while the MOs are an orthonormal basis,
S = x+x (3.5)

+ ) (3.6)

ul
-
<

For simplicity, it is assumed the MOs have no symmetry (C]), and are
ordered with the core MOs before the reactive MOs before the virtual MOs.
The generalization to symmetry adapted MOs is presented below. The AOs
must be placed in a corresponding order, those AOs which are chosen for
projection onto the core MOs first, followed by the AOs to be projected
onto the reactive and virtual MO subspaces. Equation (3.4) can be

inverted, so that the AOs are expressed in the MO basis,

X = ¢D' (3.7)
Matrix inversion is not necessary, D' is obtained by

Dt = I1n!

4 D!
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= %
= C+x+x
= ¢ . (3.8)

In Eq. (3.7), each AO X4 is a linear combination of all MOs ¢ - A par-
ticular X; can be projected onto one of the core, reactive, or virtual
MO subspaces by zeroing its coefficients Dii whenever the index k falls
in the other two orbital subspaces. That is, the projections m of the

AOs on the MOs are given by
™ = ¢D y : (3'9)

where, because of the initial ordering of the MOs and AOs, D is obtained
from D' by zeroing all elements of D' outside the diagonal core,
reactive and virtual blocks. These projections are neither orthogonal

or normalized; their metric, or overlap matrix, is calculated by

= 0 . (3.10)

The set of orthonormal projected orbitals which most closely resembles
these projections is obtained by symmetric orthogonalization (Léwdin,

1950). Let U be the orthogonal matrix which diagonalizes o,

r = utou
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The matrix needed for the orthonormalization is

L T (3.11)

A-1/2

where the elements of. are defined as

-1/2 _
Aij = sij//X;

The final orthonormal projected orbitals are calculated from

IV (3.12)

It is readily verified that these orbitals have a unit metric, and can

be expressed in the original MO basis or the A0 basis by
p = ¢T (3.13)
p = xL . (3.14)

Substitution of Eqs. (3.9) and (3.4) into (3.12) shows T and L are

calculated by
T = 0o /2 (3.15)

L = coe V2 . (3.16)

Since p and ¢ are orthogonal orbital sets, the matrix T is an orthogonal
transformation.

The occupied projected orbitals strongly resemble the original
atomic orbitals which were projected. Since an A0 is located on a
single atom, its projection, which is of course an optimal molecular
orbital capable of generating the original FORS wavefunction, is highly

localized on that atom. Usually the overlap between one of the occupied
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projected orbitals and the AO0 before projection is iﬁ excess of 0.9, so
that the projected orbitals are indeed atom localized.

The projection scheme is most easily applied if the atomic orbital
basis is of the Raffenetti type described in Chapter 1i. In this case,
the single basis functions which represent the various atomic inner
shells are projected onto the core MOs. The single basis functions
representing the atomic valence orbitals are projected onto the reactive
MOs, which are equal in number due to the choice of the full valence
space type of FORS function. Lastly, all the secondary basis functions,
such as diffuse and polarizing Gaussians, are projected onto the virtual
MOs. The resulting PLOs strongly resemble the original s, p, d, etc.
AOs, and hence could be termed s, p, d, etc. type orbitals, although
they are molecular orbitals, and thus possess small orthogonalizing
"tails' on adjacent atoms. A possible computational improvement to the
FORS model, based on these unhybridized, strikingly atomic PLOs is
presented in Chapter VI.

It is possible to apply the projection scheme when a segmented
type basis is used. |In this case, each atomic inner shell A0 is a
linear combination of the basis orbitals on that atom, and the valence
AOs are different linear combinations of the same basis orbitals. These
linear combinations are projected onto the core or valence MOs, as
appropriate, to obtain the PLOs. The linear combinations of basis
orbitals that are the orthogonal complement to the occupied AO0s can be

used to localize in the virtual space.
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It is, of course, not necessary to project s, p, d, etc. type AOs.
One could first form hybrid AOs from the atomic basis, and project these
hybrids onto the FORS orbitals to obtain hybridized PLOs. The generali-
zation of the projection scheme to the case of a reduced FRS given by
Ruedenberg, Schmidt and Gilbert (1982) involves the construction of
appropriate hybrids to be projected onto the reduced reactive orbital
space.

As previously stated, the PLOs are quite similar to the AOs; their
overlap is normally larger than 0.9. The major cause of this small
difference is the symmetric orthonormalization in Eq. (3.12). |If this
orthonormalization is not performed, and instead the projections are

just normalized according to

p = N , NU. = Gij//cii , (3.17)

the resulting orbitals p will lack orthogonalizing components on

adjacent atoms. In this case, Eqs. (3.15) and (3.16) are replaced by

T = DN (3.18)

and

L = CDN . (3.19)

It should be noted that this T is not orthogonal, since it no longer
relates two orthonormal bases. The absence of orthogonalizing tails on
these nonorthogonal projections increases their atomic character (as
measured by overlap with the AOs before projection). However, the dif-

ficulty of performing any type of calculation with a nonorthogonal



71

orbital basis renders these nonorthogonal projected orbitals useless
from a computational standpoint.

Many molecules possess one or more symmetry elements, and the dif-
ficulty of the FORS optimization is alleviated substantially by per-
forming it using symmetry adapted orbitals, which permits the symmetry
classification of the individual configurations. Upon completion of the
optimization, the molecular orbitals in each irreducible representation
are either core, reactive, or virtual orbitals. The atomic basis func-
tions are of course not symmetry adapted, but primitive symmetry
orbitals can readily be formed from them by an orthogonal transforma-

tion U

o= xu . (3.20)

These symmetry orbitals have the metric

_ A+'\
= XX

wn>>

U+X+XU

= utsu (3.21)

and the MOs can be expressed in the symmetry orbital basis by

6 = xC

= e

= ;5 ) (3.22)
¢ = u'c (3.23)

Both S and C are block diagonal along irrep boundaries.
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The projection scheme is analogous to the case of no symmetry. The

symmetry adapted AOs are.expressed in terms of MOs as

(3.24)

i
-
o

X
p' = ¢'s . (3.25)
The projections are again given by zeroing elements of D' outside core,

reactive, or virtual blocks, where this projection is now done in each

block (irrep) of D'. The resulting matrix D gives the unnormalized,

nonorthogonal projections
T = ¢D (3.26)

whose metric is

>
3
+
>

g = DD (3.27)

Symmetrically orthonormal projections are obtained from

S nne1/2
p = 7o

These symmetry adapted projections may now be localized onto the atoms
by an orthogonal transformation W,

P = pW (3.28)

A possible choice for W is U+, the inverse of the transformation from
A0s to symmetry orbitals, although one could choose W differently, for

example, to achieve a partial localization. The final PLOs are given by
p = ¢T (3.29)

p = L (3.30)
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where
T = po~1/2, (3.31)

L = coo V% . (3.32)

The use of symmetry to block diagonalize the matrices E, §, 6, 8, etc.
increases the speed of the projection process. Looping over the smaller
diagonal blocks decreases the matrix multiplication and diagonalization
time requirements, as well as storage needs.

Forming symmetry orbitals by an orthogonal transformation U,
projecting the symmetry orbitals, and localizing with U+ is equivalent
to projecting without regard to symmetry. This is proven by showing the
orbitals from the first method, BU+, are identical to those of the

second, p. The two sets of projected orbitals are given by
Ut = ycbe /Ayt (3.33)
p = xcbo /2 (3.34)
Before projection, Eq. (3.25) gives
pr = C7s
= (cu) (u*sv)

= (c*s)u
= D'U , (3.35)

where Eqs. (3.23), (3.21) and (3.8) were used. This same relation holds

after projection, as the symmetry adaptation U combines only equivalent
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AOs, i.e., core with core AOs, valence with valence A0, and secondary

with secondary A0, so

D = DU . (3.36)

With this result,

>
>
+
>

il
c
+
o
+
o
c

where Eqs. (3.27) and (3.10) were used, It can be shown that if two
matrices are related by a similarity transformation, any power of these

matrices are related by the same similarity transformation,

™ = ute™ (3.37)

in particular for m = -1/2. Substituting Egs. (3.21), (3.23), (3.36) and
(3.37) into (3.33)

ho-1/2,¢

put xCDg

= (xU) (UTe) (ou) (uFe~ 1 2yt

= XCDU-I/Z

= P ’
according to (3.34). Q.E.D.
A very useful quantity in discussing orbitals and their significance
'fn terms of occupation or contribution to bonding is the bond order

matrix Y¢, which represents the expansion of the first order reduced
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density matrix in a particular orbital basis

olryr) = 3 J;y?qui(r)«bj‘(r-) : (3.38)

The first order density, i.e., the bond order matrix in a particular
orbital basis can be calculated from the wavefunction obtained in the
same orbital basis according to its formal definition

plryr') = N ds, / dt, ... / dry (rs;,1ys oy TN)w*(r's1,12, ceoy Ty)
Upon completion of the FORS optimization, the bond order matrix in the
orbital basis used to construct the FORS wavefunction is, therefore,
known. Changing the orbital basis by transformations within the core
or reactive orbital spaces leaves y and thus p invariant, but the bond
order matrix does change, and should thus be given a superscript label
to indicate the orbital basis used to expand p. Upon localization, the
bond order matrix in the PLO basis can be found without the computa-
tional cost of reexpressing the wavefunction in the low symmetry PLO

basis, These PLOs are obtained by transforming the original MOs,

P = o¢T
where T is given by equations such as (3.15) or (3.18). This can be

inverted,

-1
¢ = pT ,

with T-1 equal to 7Y if the PLOs are orthonormal, or else found by
explicit matrix inversion if nonorthogonal PLOs are made. Substituting

in Eq. (3.38) gives



- ¢ 1 =1y %
i J k
+
-1 ¢ =1 ¥*
= 5.2 (2T .y .T., Jp.p
K e [ ] ki'ij jo "Tk"e
Of course, in the PLO basis
o = I Iv pr
K o ke k"
Comparing and using matrix notation,
+
-1 ¢~1
¥ o= T T : (3.39)

The bond order matrix for a particular orbital basis is very
helpful in interpretation of those orbitals. To repeat, the diagonal
elements of the bond order matrix have the interpretation of electron
occupations, while the sign and magnitude of offdiagonal elements are
related to the strength of binding or antibinding interactions between
orbitals.

Having obtained the bond order matrix over the PLOs, the procedure
to obtain DLROs given in the previous section can be applied. The
localization by projection can thus serve to nearly eliminate the com-
putational requirements for obtaining DLROs, namely the initial localiza-

tion onto atoms, which is quite time consuming for other localization

methods.

E. Chemically Adapted MOs
The atom localized orbitals such as the unhybridized PLOs or the

hybrid DLROs, and their bond order, or density matrix, serve to
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characterize the participation of atoms in the molecular wavefunction.
It is also‘desirable to find MOs which display the typical molecular
characteristics of the electronic wavefunction. Such orbitals are
called chemically adapted, and are genéralizations of the energy
localized MOs of an SCF wavefunction. The term chemically adapted is
applied to any orbitals which clarify some aspect of the molecular
bonding; thus, it may be possible or desirable to isolate several sets
of chemically adapted MOs.

Chemical terminology for the description of electronic structure
includes ''two center bond', ''resonance structure', "lone pair', "inner
shell", "nonbonding orbital', '"'three center bond', "Lewis structure',
etc. A general proéedure to extract MOs from the FORS orbital space
which correspond to these concepts is difficult to formulate, particu-
larly for molecules with unusual electronic structure. Two different
procedures are given below, however, any particular molecule may require
some other treatment to best illustrate the electronic distribution in
that molecule.

The discussion of chemical adaptation of the FORS MOs is presented
here for a general FORS function, not necessarily a full valence space.
Chemically adapted MOs for the closed shell orbital space are readily
found by energy localization, as described in Section I11.B.2. A guiding
principle for the determination of chemically adapted reactive orbitals
is maximal occupancy, that is, concentrating the electron distribution
into as many nearly doubly occupied orbitals as possible. The natural

reaction orbitals, found by diagonalizing the entire density matrix,
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satisfy this criterion, but are unfortunately delocalized over the
entire molecule. A second desirable quality of chemically adapted
“orbitals is that they should be localized into two center bonds, etc.
Chemically adapted MOs thus respresent a compromise between highly
localized atom adapted MOs and the extremized occupation of nétural
reaction orbitals. They should be as localized as possible, while
possessing a nearly diagonal matrix. This is obviously not a unique
definition, leaving room for maneuvering to determine the most clarifying
possible chemical MOs.

One simple method for obtaining these MOs starts from the natural
orbitals, which can usually be divided into three sets of NROs, some
with occupancy near two, some with occupancy near zero, and possibly
some with near single occupancy. Restricting the localization to just
those orbitals with nearly double occupancy gives localized orbitals
which all, of necessity, have occupations near 1.9. These orbitals
will be localized into the desired chemical interpretations as lone
pairs, two center bonds, and possibly multicenter bonds. Localized
correlating orbitals for these electron pair orbitals can be found by
localizing the nearly vacant NROs. Finally, any singly occupied
orbitals can be localized. Note that these localizations restricted to
part of the NRO space must be of the intrinsic type.

A second procedure, less arbitrary than dividing the natural
orbitals by occupation, but more difficult to apply, starts from the
atom localized orbitals. The initial step is to obtain one center pair

orbitals by diagonalizing each atomic submatrix of the density matrix.
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Any orbitals with occupation near two are taken as chemically adapted,
l.e., lone pairs, and are removed from further consideration. Next,
every possible two atom submatrix of the density matrix transformed into
the above found atom-diagonal~density orbitals is taken and diagonalized.
Any orbitals found with occupation near two are two center bond orbitals.
These bond orbitals are symmetrically orthogonalized, and are removed
from further consideration. |If any orbitals with occupation signifi-
cantly greater than zero remain, multicenter bonding is present. Three
center bonds are found by diagonalizing all possible three atom sub-
matrices and taking any orbitals with occupancy near two, after sym-
metric orthogonalization. This process is repeated until any possible
bonds over even more centers are found. The remaining orbitals all
have occupancies near i%ro. It is possible to form localized correlating
orbitals from these, perhaps by energy localizing them. This could also
be accomplished by forming the orthogonal complement to the above found
two center bonds, etc.

These two schemes may not lead to MOs which are the most revealing.
For any particular molecule, chemically adapted MOs may be found in
some other fashion. In any case, the ability to extract such chemically

significant orbitals from the FORS wavefunction is a very important

feature of the FORS model.

F. Examples of Orbital Types
Examples of the various kinds of orbitals described in the pre-
ceding sections are illustrated for some of the full valence space

type FORS wavefunctions of diatomics given in Chapter |l. The molecules
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chosen are NH, F2 and CO. The orbitals are illustrated by contour
plots giving the orbital amplitude on a planar cross section of the
orbital. Each contour line represents 0.05 bohr-3/2. Solid and dashed
contours represent positive and negative amplitudes, respectively.
Nodes or zeros are shown by widely spaced dashed curves.

Three different orbital sets are giQen for NH in Fig. 3.1. The
core MO 1s and valence MO T (and the "y not shown) span one dimensional
orbital spaces and are, thus, the same for all three orbital sets. The
first set of valence o orbitals shown are the natural orbitals, which
are, generally speaking, delocalized over the molecule. The electron
occupancies of these orbitals have been extremized; there are two nearly
doubly occupied orbitals and one nearly vacant correlating orbital.

The second orbital set for NH was localized according to the energy
localization procedure of Edmiston and Ruedenberg (1963, 1965). The
localization yields orbitals that are spatially isolated, so that sp
hybrids are found on the nitrogen atom. These two hybrids have a sub-
stantial offdiagonal bond order of 0.3999. Diagonalization of the 2 x 2
nitrogen o block gives two directed localized reaction orbitals, with
occupancies of 1.9960 and 1.0239. This diagonalization increases the s
character of the lone pair hybrid pointing away from the H atom, and
increases the p character of the nitrogen bonding hybrid.

The final set of NH orbitals shown were localized by the projection
technique. Note that these orbitals are quite like unhybridized atomic
orbitals. One measure of their atomic nature is the overlap of these

MOs with the corresponding free atom AO. These overlaps are shown in
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Table 3.1. Inspection of the hydrogen orbitals shows that the energy
and projection localization methods accomplish the localization onto
atoms slightly differently.

For F2’ the natural orbitals are shown in Fig. 3.2. The projected
localized orbitals are shown in Fig. 3.3. These projected orbitals are
even more atomic in character than those of NH. The overlap of these
MOs with the corresponding AOs is given in Table 3.1. These overlaps
can be brought even closer to unity if the symmetric orthogonalization
is not performed. These nonorthogonal orbitals are not shown, but their
overlaps with the corresponding AOs are included in Table 3.1, and are
closer to one than for the orthonormalized PLOs.

The local density submatrix on each fluorine for the orfhogonalized
PLOs is diagonal with respect to the n-PLOs, but not with respect to
the g-PLOs, o(F2s) and o(F2pz). Diagonalization of this 2 x 2 local o

density matrix yields two hybrid-type PLOs with the compositions

0.980426 o(F2s) - 0.196887 o(F2pz)

o (F2p)

o(Fbo) 0.196887 o(F2s) + 0.980426 o(F2pz)

on the left fluorine and the mirror images on the right fluorine. The
occupation numbers of these two MOs are 1.994 and 1.006, respectively,
as compared with 1.956 and 1.046 for the original 2s and 2pz type PLOs,
showing that the left and right o(Fep) orbitals have lone pair character
and that the left and right o(Fbo) orbitals have bonding character.

The total o and w density matrices for these atom-adapted FORS MOs is

given in Table 3.2. The only large offdiagonal element of this matrix
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Table 3.1. Overlap integrals between FORS PLOs and

free atom AOs

NH F2 co

Nis 0.9996 orthonormal PLOs Cls 0.9994
N2s 0.9557 Fls 0.9994 C2s 0.9237
N2pz 0.9681 F2s 0.9900 C2pz 0.8630
N2px  0.9987 F2pz  0.9818 C2px  0.9437
H1s 0.8886 F2pm  0.9982 O1s 0.9999
nonor thogonal PLOs 02s 0.3030
Fls 0.9993 02pz  0.9471
F2s 0.9991 02px 0.9722

F2pz  0.9949

F2pm  0.9997
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Figure 3.3.

Projected localized orbitals for FZ'
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Table 3.2. Bond order matrix for F, following

atomic diagonalization

Left

Right

o(Fep) o(Fbo)

o(Fep) o(Fbo)

: o (F2p) 1.994 0 -0.004  0.034
i o (Fbo) 0 1.008 0.034  0.870
R
i o(Fap) -0.004  0.034 1.995 0
g
h  o(Fbo) 0.03%  0.870 0 1.008
t
n(F,left) m(F,right)
n(F,left) 1.999 0.001
n(F,right) 0.001 1.999
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indicates the only strong interaction is between the left and the right

c(Fbo) MOs.

One can now form the binding and antibinding combinations of these

left and right atom-adapted bonding MOs,

[o(1eft Fbo) + o(right Fbo)1/vZ ,

o(szo)

[o(left Fbo) - a(right Fbo)1/V2

o(anb)

The resulting chemically adapted o-type FORS MOs have the density matrix
given in Table 3.3. This density matrix is very nearly diagonal. Com-
plete diagonalization of the density gives the natural orbitals, which
have only slightly more extremized occupation numbers, at the expense
of delocalization over the diatom. Plots of the chemically adapted MOs
are shown in Fig. 3.4. Eight of these MOs represent inner shells (not
shown) and lone pairs with occupancies near 2. The ninth FORS MO
represents the sigma bond and the last FORS MO correlates the electrons
in the sigma bond. It is apparent that this choice of FORS MOs is a
chemically motivated compromise between natural and completely localized
orbitals. The lone pair MOs and the bonding MO clearly correspond to
the electron dashes in the Lewis structure |F = F|. It is also
apparent that the chemically adapted orbitals with occupation numbers
near 2 are similar in character to localized SCF MOs. The former are,
thus, a generalization of the latter. The central dash in the Lewis
structure of F2 is represented by one localized bond orbital in the SCF
wavefunction, while this electron pair occupies a bond and correlating

antibond in the FORS wavefunction. |t is this increase in the
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Figure 3.4. Chemically adapted orbitals for Fp. Numbers give electron

occupancies. Compare nearly doubly occupied orbitals with

the Lewis structure for F2
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Table 3.3. Bond order matrix for F2 chemically adapted MOs

o(left F2p) a(right F2p) c(FZbo) c(anb)
o(left Fep) 1.994 -0.004 0.024 0.024
o(right Fap) ~0.004 1.994 0.024 -0.024
c(FZbo) 0.024 0.024 1.878 0
o(F,ab) 0.024 -0.024 0 0.138
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sophistication with which the central dash is treated that accounts for
the improvement of the FORS over the SCF wavefunction.

The final example of orbital types is CO. The natural orbitals
are shdwn in Fig. 3.5, with the carbon atom at the left. Since CO is a
diatomic, the natural orbitals are delocalized only over two atoms, and
thus are to that extent chemically adapted. These natural orbitals
explain very nicely the ligand chemistry of CO. The carbon end of CO
bonds to metal atoms by forming ¢ donor and n* acceptor bonds. The o
donation is from the nearly filled 4o natural orbital, while the nearly
vacant 2m natural orbital serves as the n* acceptor.

The projected localized orbitals of CO are shown in Fig. 3.6. One
glance shows that these orbitals, particularly on the carbon, are less
atomic than the NH or F2 PLOs. This is born out by the overlap
integrals between PLOs and corresponding AOs given in Table 3.1. The
populations of the two atoms are interesting. Summing the occupations
of the PLOs on each atom gives 5.965 e on carbon and 8.035 e on
oxygen. For comparison, a conventional Mulliken population analysis
gives 6: 5.924 ", 0: 8.076 e . Note that the small computed dipole
moment for the CO FORS function, which unlike atomic populations is a
physical observable and was given in Chapter |l, has the opposing

-+
sense C 0 .

G. The FORS Model Reexamined
The presentation of the FORS model in Chapter Il and Ill has of
necessity been in a linear fashion. The reasoning behind the model is

actually more of a full circle. In Chapter I, the number of orbitals
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Figure 3.5. Natural reaction orbitals for CO. Numbers give electron
occupancies
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Figure 3.6.

Projected localized orbitals for CO.
occupancies

Numbers give electron
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in the full valence space type FORS function was defined as the number
of minimal basis set AOs present. As a cénsequence, the localization
schemes described in this chapter give as many localized M0Os on each
atom as in that atom's formal minimal basis. It Is just to attain this
result that the number of FORS orbitals was chosen so. In Chapter II,
the atomic MBS orbitals were shown to give reasonably accurate natural
orbitals, but that a significant amount of energy can be recovered by
optimization in an extended basis set. In this chapter, the optimal
localized MOs are shown to possess almost, but not quite, unit overlap
with the free atom MBS. The atomic MBS AOs are almost optimal MOs; the
optimal MOs are almost identical to the MBS.

The analysis in these two chapters confirms the dominance of the
atomic MBS in molecular wavefunctions. The FORS model uses the simple
concept of the atomic minimal basis to define a sophisticated molecular
wavefunction. As a consequence, a FORS wavefunction, with a quantitative
reliability as shown in Chapter II, is open to qualitative interpreta-

tion, as demonstrated in this chapter.
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1V. CONCERTED DIHYDROGEN EXCHANGE BETWEEN ETHANE AND
ETHYLENE. SCF AND FORS CALCULATIONS OF THE BARRIER

\

A. Introduction

The dihydrogen exchange reaction detailed in thi; chapter is an
application of the FORS model to a reaction of greater chemical signifi-
cance than the dissociation of diatomics. The investigation of this
reaction has been published by Feller, Schmidt and Ruedenberg (1982).
The SCF geometry optimization and vibrational analysis calculations
described helow were performed by David Feller.

The least-motion concerted transfer of two hydrogen atoms from
eclipsed ethane to ethylene is symmetry-allowed, and has been explicitly
discussed as a paradigm by Woodward and Hoffmann (1871) and by Goddard
(1972) . Rye and Hansen (1969) have conjectured such a process to play
an intermediary role in the hydrogenation of ethylene over a metal
catalyst, supposing that the adsorbed ethylene might have a structure
similar to that of ethane. Doering and Rosenthal (1967) have observed
dihydrogen exchange from cis-9,10-dihydronaphthalene to various olefins.
Mackenzie (1965, 1969) has observed intramolecular hydrogen transfer in

isodrin derivatives, l.e.:
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A more recent observation of this type of transfer is

€ =CO0Me

by Hagenbuch et al. (1981).

The analogous hydrogenation of olefins by diimide has long been
recognized for its versatility and stereospecificity. Miller (1965)
and Hunig et al. (1965) have given reviews of olefin hydrogenation by
diimide. Gas phase kinetic studies by Vidyarthi et al. (1974) and
Willis et al. (1977) confirm the mechanism of concerted dihydrogen
transfer from diimide to olefins.

Nonetheless, the theoretical investigation reported here reveals
the existence of a substantial barrier for the concerted exchange of
hydrogens from ethane to ethylene.

In agreement with the reasoning by Woodward and Hoffmann (1971), a
concerted movement of both hydrogens is assumed, maintaining C2v symmetry
throughout. A further assumption is that the activated complex of

highest energy occurs for the transition state of D2h symmetry :
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That this geometry is indeed a saddle point on the energy surface is
verified afterwards.

In the present case, the ''conservation of symmetry' is equivalent
to the statement that a single-determinant Hartree-Fock SCF wavefunction
can be used to represent the system at all stages of the reaction in
the sense that the occupied MOs of the reactants deform continuously
and smoothly into the occupied MOs of the products. Accordingly, ab
initio calculations at the SCF level were performed for the reactant/
product geometry and for the transition state geometry. Subsequently,
the validity of this approximation and, hence, the applicability of the
concept of symmetry-allowedness is verified by carrying out Full
Optimized Reaction Space (FORS) multiconfiguration SCF (MCSCF) calcula-
tions which allow for the dominant electron correlation effects on the
calculated barrier. Orbital analysis of the SCF and FORS wavefunctions

serve to deepen the understanding of the electronic rearrangements.

B. Calculational Details

Three different basis sets, taken from Schmidt and Ruedenberg
(1979), were used during this investigation. The geometry optimization
of the complex was performed with the smallest basis, denoted basis A,
consisting of a C(6s3p/ls2p), H(3s/2s) QBO set, with the hydrogen
functions scaled 1.1. Once the optimal geometry was found, larger bases
were employed. Basis B, of double zeta quality contained an increased
number of primitives, namely C(10s5p/3s2p), H(4s/2s) with the hydrogen
unscaled. Basis C, of double zeta plus polarization quality, contains

basis B and a set of d functions on carbon and p functions on the
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reacting hydrogens, with exponents gp = 0.75 and cp = 1.0, taken from
Dunning and Hay (1977). This final basis contains 170 PAOs and 86 QBOs.

The Hartree-Fock SCF calculations on ethane, ethylene, and the
intermediate complex were performed using all three bases. The Full
Optimized Reaction Space (FORS) MCSCF calculations were undertaken with
basis B.

A1l calculations, except the normal mode analysis, were performed
using the ALIS system for quantum chemical molecular calculations. The
calculation of the normal modes and their frequencies was done with the
GAMESS (General Atomic and Molecular Electronic Structure System) pro-
gram system of Dupuis, Spangler and Wendoloski (1980), using the

standard 3-21G basis of Binkley et al. (1979).

C. Results and Discussion of SCF Calculations

1. Geometry
The determination of the transition state of the reaction con-
sidered here is greatly simplified by the fact that it has DZh symmetry.

Using basis A, all geometric parameters of the activated complex were

optimized within this symmetry by SCF calculations. The optimal geometry

is presented in Table 4.1, The CC bonds of the complex are intermediate
in length (1.42 R) between ethylene (1.33 ) and ethane (1.57 A). The
four central CH bonds are quite long (1.38 A), but the peripheral CH
bond remains 1.09 R. The peripheral hydrogens are bent back 29.0

degrees, again intermediate between ethylene (0°) and ethane (51.3°).
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Table 4.1. Optimal geometry of DZh ethane-ethylene

complex
Atoms x2 ya z°
c +2.555 £1.341 0
H (reacting) 0 +1.878 0
H (peripheral) +3,095 +2.315 +1.729

9coordinates of atoms in units of bohrs (1 bohr
= 0.5292 ﬂ) and referring to the coordinate system
shown in the text.
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That this optimized geometry of the intermediate complex is indeed
a saddle point on the molecular energy hypersurface was verified by
calculating all normal modes and their frequencies. Diagonalization of
the mass weighted Hessian matrix yielded exactly one negative force con-
stant which is the condition for a transition state. The corresponding
imaginary frequency was found to be 21837 cm-I, indicating a rather
sharply curved energy surface in the direction of the reaction coordi-
nate. The latter is the b3u normal mode which consists of the set of

atomic displacements shown here:

It is apparent that the left hand side of this figure depicts the
deformation towards ethane (decrease of the HCC angle, increase of the
CC distance, decrease of the distance between carbon and its neighboring
central hydrogen), whereas the right hand side depicts the deformation
towards ethylene (increase of the HCC angle, decrease of the CC dis-
tance, increase of the distance between carbon and its neighboring
central hydrogen). The center of mass is, of course, at rest. |If the
central hydrogens are thought of as belonging to the right hand part of
the complex, then the indicated displacements describe the entrance of
the reactants into the transition state. |If the central hydrogens are

imagined to belong to the left hand part of the complex, then the
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picture describes the exit out of the transition state towards the

products. Clearly, this normal mode describes the concerted exchange of

both hydrogens.

For ethane, the experimental geometry of Kuchitsu (1966) was
assumed, while for eclipsed ethane, the SCF optimized geometry of

Clementi and Popkie (1972) was taken.

2. SCF picture of the electronic structure

The low lying molecular orbitals, which are essentially involved
in this reaction, arise from one sp3-type hybrid on each carbon and a
1s-type orbital on each of the exchanging hydrogens. Each of these six
orbitals contributes one electron to the reacting set. Because of the
quasi-hexagonal arrangement of these atomic orbitals, the molecular
orbitals of the activated complex are similar to those of the DGh
'benzene m system. Of course, the hydrogen and carbon orbitals are
inequivalent, lowering the symmetry to DZh’ and 1ifting the degeneracy
of the benzene e orbitals, as illustrated in Fig. 4.1. Nonetheless, the
nodal structures of the transition state orbitals are quite similar to
those of benzene. For the SCF calculations, the three lowest of these
molecular orbitals are doubly occupied, and the three highest are
vacant. This quasi-aromatic character of the transition state lends
support to the view that the reaction is symmetry-allowed. It should be
noted, however, that the highest occupied orbital (4b3u) in the
activated complex is the m orbital of ethylene delocalized antisym-
metrically between the left and right CC bonds and, hence, represents an

antibonding combination of the left and right m MOs.
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Figure 4.1. Comparison of the nodal structure of the reactive MOs of
the transition state with that of the m MOs of benzene
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In addition to the three occupied MOs in the reaction zone which
were just discussed, there are fourteen additional occupied MOs cor-
responding to four carbon inner shells, two CC sigma bonds, and eight
peripheral CH bonds. When canonical SCF orbitals are determined, then
the ten nonreacting valence MOs get mixed with the three occupied
reaction MOs discussed in the preceding paragraph. In order to identify
clearly the essential changes along the reaction path, it is, therefore,
necessary to generate molecular orbitals that are localized inside and
outside the reaction zone. We accomplished this separation into
reacting and nonreacting MOs by performing the following partial
Edmiston-Ruedenberg (1963, 1965) localizations. In ethane, all valence
MOs were localized yielding one CC sigma bond and six CH sigma bonds.

In ethylene, the five sigma valence MOs were localized yielding one CC
sigma bond and four CH sigma bonds, but the m MO was left in canonical
form. For the activated complex, twelve MOs were localized, namely all
valence MOs excepting only the hb3u MO which was left in canonical form.
This localization of the transition state yielded two equivalent CC
sigma bonds, eight equivalent peripheral CH sigma bonds, and two
equivalent CHC three-center bonds describing the concerted hydrogen
transfer. The canonical bb3u MO describes the shift of the w bond from
one CC atom pair to the other. Contour plots of the three reacting MOs
mentioned last are shown in Fig. 4.2 for the reactants/products and the
transition state illustrating the progress of the reaction.

An alternative SCF MO interpretation of the transition state is

obtained when all orbitals, including the hb3u MO, are incorporated in
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Figure 4.2.
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the localization process. When this is done, one obtains in the reaction
zone, the MOs depicted in Fig. 4.3 rather than those shown previously

in Fig. 4.2, (The SCF wavefunction formed with the MOs of Fig. 4.3 is,
of course, identical to the one formed with the MOs of Fig. 4.2.) The
MOs of Fig. 4.3 can be thought of as representing the intermediate

stage of the continuous and concerted orbital shifts and deformations

which are most easily summarized by the schematic diagram:

In the left column of Fig. 4.3, the three MOs are localized into three
two-center bonds. In the middle column, each one of them is delocalized
into a three-center bond covering three adjacent atoms. In the right-
hand column, each MO is now relocalized into the adjacent two-center
bond. This picture of an MO crawling to a neighboring site corresponds
remarkably well to the idea of ''electron pushing'' associated by organic
chemists with shorthand diagrams such as the above. Figure 4.3 demon-
strates that, for the reaction at hand, this type of diagram has a
rigorous quantum mechanical meaning, if it is understood to imply
adiabatic orbital deformations rather than dynamic motions of electrons.
It is worth noting, however, that those two intermediate transition
state MOs of Fig. 4.3 which represent mixtures between a CH bond and a

CC 7 bond (lower two plots) contain nonnegligible antibonding
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-0.640
CZHG + CzH 4

Figure 4.3. Completely localized SCF orbitals in the reaction zone.
Numbers give orbital energies in hartrees
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contributions at the C atom diagonally across from the main orbital lobe.
These two antibonding contributions are equivalent to the previously
mentioned antibonding contribution of the 4b3u MO.

The partially localized SCF orbitals in Fig. 4.2 correspond to

this "electron pushing'' diagram:
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3. Energies

SCF energies of ethylene, eclipsed ethane, and the intermediate
complex for all three bases are reported in Table 4.2, along with the

predicted reaction barriers. These barriers are underestimates because

of the assumption of an eclipsed conformation for ethane as it enters
the reaction coordinate, Nonetheless, they are all quite large. The
computed SCF reaction barrier increases with increasing flexibility of
the basis to a value of nearly 77 Kcal/mole for the largest bases
considered.

That this barrier is related to the energetic changes of the three
reacting MOs depicted in Fig. 4.2 can be inferred from Fig. 4.4. It
exhibits quantitatively the orbital energies, i.e., the diagonal elements
of the Fock matrix, of all o-type localized valence orbitals and of the
m canonical orbitals for the reactants/products and for the transition

state; the connecting lines indicating the progress of the reaction. It
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Table 4.2, Calculated total energies and barrier to dihydrogen

exchange
Level of CyH10 CoHy CoHg Barrier®
Basis Calculation (Hartree) (Hartree) (Hartree) (Kcal/mole)
A SCF ~-156.6792 -77.8036 -78.9871 70.0
B SCF -157.0813 -78.0078 -79.1923 74.5
C SCF ~-157.1338 -78.0333 -79.2228 76.7
B FORS -157.1524  -78.0377 -79.2252 69.3

%Barrier equals E(CyHiqg) - E(

hartree = 627.51 Kcal/mole.

CZHh) - E(C2H6), where 1
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is apparent that the orbital energies of the ten nonreacting MOs vary
smoothly from the (higher) ethane values to the (lower) ethylene values,
with the transition state having intermediate values. By contrast, the
three MOs which are localized in the reaction region, i.e., the hb3u MO
and the two CHC three-center MOs all have substantially higher values
for the activated complex than for the reactants and products.

The numerical values of the MO energies of the reacting MOs are also
indicated on Fig. 4.2. The orbital energies of the alternate orbitals
of Fig. 4.3 are contained in that figure,

The invariant sum of all orbital energies is 114 Kcal/mole higher
for the transition state than for the reactants/products and, thus, of
the same order of general magnitude as the actual barrier. (The sum of
the SCF orbital energies is well-known to differ from the total SCF
energy by the electron repulsion energy.) A breakdown of this 114
Kcal/mole according to contributions from the various orbital types

shown in Figs. 4.2 and 4.3 is given in Table 4.3,

D. Results and Discussion of FORS Calculations
In view of the large barrier found in the SCF approximation, two
questions arise: (i) Is this result significantly changed when the
wavefunction allows for correlation? and (ii) Is the reaction in fact
symmetry allowed? The dominant changes due to correlation are described
by the FORS model which moreover provides further insight into the

electronic rearrangements.
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contributions from various orbital types

Orbital types of Fig. 4.2 AE

a Orbital types of Fig. 4.3 AE

L carbon inner shells
2 CC o bonds

8 peripheral CH bonds
2 reacting CH bonds

1 reacting CC 7w bond

Total

+10.4 4 carbon inner shells +10.

-61.8 2 CC o bonds -61.

-46.9 8 peripheral CH bonds -46.

+120.4 1 reacting CH bond +60.
+92.1 2 bonds changing from CH

to CC 7 or vice versa +152.

14,2 Total 114,

a
z ZEn(Cl*H.IO) -z
n n

25n(C2H4) - i Zen(C2H6) expressed in Kcal/mole.
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1. Wavefunctions and energies

The FORS wavefunction of the activated complex consists of the 42 Ag
space orbital products, including the SCF configuration, which can be
formed by distributing the six reacting electrons over the six reaction
orbitals which are similar in shape to those indicated in Fig. 4.1. A1l
possible couplings of these space orbital products with the one or two
permissible spin eigenfunctions yield a total of 52 ]Ag SAAPs which
comprise the configurational basis for the FORS function. In all of
them, the remaining fourteen MOs are left doubly occupied (but not
frozen) as the '"monreactive core!. The optimization was performed as
follows. Two preliminary six SAAP MCSCF calculations followed by CI
calculations for configuration selection preceded the final eight SAAP
MCSCF orbital optimization. A final C! calculation was performed to
obtain the final FORS energy, wavefunction, and natural reaction
orbitals.

The corresponding configurational FORS bases for thg reactants/
products are as follows. In ethylene, it consists of the two singlet
SAAPs of appropriate symmetry that can be made from the bonding m-MO
and the antibonding 7-MO. In ethane, it consists of the twelve singlet
SAAPs of appropriate symmetry which are possible using the bonding and
antibonding o MOs in the reactive CH bonds; the other four CH bonds and
the CC o bond remaining described by doubly occupied bonding MOs. The
ethylene FORS wavefunction was obtained by direct MCSCF optimization,
while a preliminary three SAAP MCSCF calculation preceded the final

twelve SAAP MCSCF calculation on ethane. The FORS wavefunction of the
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reactant/product state is simply the normalized antisymmetrized product
of the ethane and ethylene FORS wavefunctions and, hence, is a super-
position of 24 SAAPs.

Only basis B was used for these calculations, and the FORS energies
of all three molecules are presented as the final entry in Table 4.2.
Although for each molecule the FORS energy is much lower than the SCF
energy using the same basis, the difference in the electron correlation
energy of the reactants/products and the intermediate complex is merely

8.3 millihartree, corresponding to a barrier lowering of only 5

Kcal/mole.

For the transition state as well as for the reactant/product state,
the SCF-type configuration (in terms of natural orbitals) is dominant
by far. In the 52 term transition state FORS wavefunction, this SAAP
has the coefficient 0.967 corresponding to a weight of 92%. In ethane
and ethylene, the SCF-type SAAPs have the coefficients 0.9903 and 0.9767,
respectively, so that the coefficient of the SCF-type configuration in
the 24-term FORS wavefunction of the reactant/product state is 0.9903

x 0.9767 = 0.967 as well. It is, therefore, indeed justified to con-

sider the reaction as symmetry-allowed.

2. FORS picturé of the electronic structure

As usual for any sensibly formulated FORS function, the physical
interactions automatically localize the six reactive MOs in the reac-
tion zone and the fourteen (inner shell and valence) core MOs outside
the reaction zone. The core MOs can be transformed among each other by

an arbitrary orthogonal transformation, and the same holds true among



113

the reactive MOs. Localization of the core MOs yields MOs that are
very similar to the corresponding SCF MOs. In the orbital space of
the six reactive orbitals, several choices of FORS MO sets .are of

interest.

The six natural reaction orbitals of the FORS wavefunctions for

the three molecules, obtained by diagonalizing the first-order density
matrix, are shown in Fig. 4.5. They furnish the orbital description
which is closest to the SCF orbital description, in that is has the
smallest number of dominant FORS MOs. The nodal surfaces of the natural
reaction orbitals of the transition state are very similar in both
number and location to those of the schematic MOs which were conjectured
in Fig. 4.1. Each orbital deforms in a smooth and continuous fashion
from reactants to activated complex to products, in accordance with the
symmetry-allowed nature of the reaction. The symmetry-allowed nature

is furthermore confirmed by the near constancy of the electron occupa-

tions of the nearly doubly occupied orbitals in Fig. 4.5, and by the
smallness of the occupation numbers of the correlating orbitals in
Fig. 4.5.

Localization of the six natural reaction orbitals according to
the Edmiston-Ruedenberg (1963, 1965) energy criterion yields the six

AO-1ike molecular orbitals shown in Fig. 4.6. These localized reaction

orbitals have the somewhat deformed shapes of the hydrogen 1s AOs and
the carbon hybrid AOs which were used conceptually to generate the
symmetry-adapted full reaction space orbital set. The localized

reaction orbitals represent '"molecule-adapted minimal basis atomic
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Figure 4.5. Natural reaction orbitals of the FORS wavefunctions.
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Figure 4.6. Localized reaction orbitals of FORS wavefunction of the
transition state. Numbers in center give electron
occupancies; numbers between orbitals are bond orders
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orbitals', That is, the minimal basis set AOs can be imagined as
having been deformed in such a fashion that they are directly usable as
orthogonal FORS MOs. Conceptually, all other FORS MOs, such as, e.g.,
the natural reaction orbitals, can then be conveniently thought of as
being obtained from the localized reaction orbitals by orthogonal
transformations. |In this manner, they can be easily visualized.

The localized reaction MOs of the FORS wavefunctions for ethane
and ethylene have been very similar shapes, and Table 4.4 lists all
populations and bond orders for the localized reaction orbitals of
reactants, products and the transition state. For the transition state,
the populations and bond orders between adjacent pairs are also indi-
cated in Fig. 4.6. The values of the bond orders are readily understood
as the sum of the contributions made by the three dominant natural

N

reaction orbitals shown in Fig. 4.5., i.e., pij N 2zn TinTjn’ where

n=ubha , 3b2u’ 4b3 and I is the transformation from natural to localized

g
reaction orbitals. (For example, the substantial negative CC bond

u

order diagonally across the ring results from the positive hag con-
tribution and the negative contributions from the 3b2u and bb3u MOs.)
From Table 4.4, the following inferences can be drawn: (i) Each
localized reaction orbital remains occupied by almost exactly one
electron throughout the reaction; (ii) In ethane the two strong CH

bonds interfere little with each other; (iii) The corresponding CH

bonds in the transition state are weaker than those in ethane; (iv) The
m-bond between the neighboring carbons, too, is weaker in the transition

state than in ethylene; (v) In the transition state, all CH bonds and



117

Table 4.4, Populations and bond orders of localized reaction

orbitals
Transition
Position Ethane State Ethylene
Populations
C atom 1.0053 1.0006 1
H atom 0.9947 0.9987 0
Bond Orders
CH (neighbors) 0.9787 0.6798 0
cC (neighbors) 0.0610 0.5122 0.9081
CH (next neighbors) -0.0003 0.0006 0
cc (next neighbors) 0 -0.0018 0
CC (third neighbors) 0 -0.3778 0

HH (third neighbors) -0.0588 -0.1128 0




118

CC bonds interact with each other; and (vi) There is some antibonding
character across the ring which presumably contributes to the barrier.
It should be noted that the occupation numbers and bond orders
given in Fig. 4.6 and in Table L.4 are the elements of the first order
density matrix in terms of the orthogonal MOs given in Fig. 4.6 and,
hence, are entirely unambiguods. In view of the strong localization of
these orbitals, these occupation numbers imply that, of the six
reacting electrons, a charge of one resides near each of the six
reacting atoms in the transition state. (These populations are not
Mulliken populations, which refer to nonorthogonal and less localized
atomic basis orbitals. 1In the present‘case, a Mulliken population
analysis distributes the six reacting electrons as follows: reacting
hydrogen = 0.930; carbon = 1.020; and peripheral hydrogen = 0.007. In
view of the well-known questions regarding the definition of Mulliken
populations, the meaning of these values is less definite.)

Further sets of interesting FORS MOs are chemically adapted

reaction orbitals, which are defined as MOs that have nearly maximal or

minimal occupation numbers and, in addition, are also localized in as
small a part of the molecule as possible. For the transition state, a
chemically adapted reaction orbital set is given in Table 4.5 in terms
of the localized reaction orbitals. It is readily seen that three of
these MOs have occupation numbers close to 2 and are very similar in
shape to the partially localized SCF MOs, which were depicted in

Fig. 4.2. Each of the remaining three MOs is seen to be an orbital

which essentially provides "interatomic!' electron correlation to one of
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Table 4.5. Chemically adapted reaction orbitals corresponding to
SCF MOs of Fig. 4.2 in terms of localized reaction
orbitals®

Occupation
|C1> |H1> |C2> |03> |H2> |C4> Numbers

| cHe>, /2 1/2¥2  1/2 0 0 0 1.961

2

|CHc-:=>1 /2 -1/2Y2  1/2 0 0 0 0.039

|che>, o 0 0 /2  1/2Y2 1/2 1.961

2
|CHC*>2 0 0 0 /2 -1/2v¥2  1/2  0.039

|ccm> /2 0 -1/2 -1/2 0 1/2 1.890

2
fccm> 172 0 -1/2 /2 0 -1/2  0.110

8column headings:
Fig. 4.6, corresponding to the indicated atoms (progressing
counterclockwise, starting at one-o'clock position).
Chemically adapted reaction orbitals (labels have

meanings similar to those used in Fig. 4.2).

headings:

Row

Localized reaction orbitals, as shown in
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the three dominant MOs. Another set of chemically adapted reaction
orbitals is given by the orthogonal transformation in Table 4.6. It is
readily verified that those MOs with occupation numbers close to 2 are
very similar to the completely localiéed SCF MOs of Fig. 4.3, and that
each of those MOs with near-zero occupation numbers again provides
interatomic correlation to one of the dominant MOs. From the expansions
in this table, the antibonding character across the ring mentioned

earlier for the MOs |CCH> and |HCC> is particularly evident.

E. Discussion of Barrier

The calculated zero point vibrational energies of ethylene,
eclipsed ethane, and the activated complex are 0.0547, 0.0787, and
0.1318 Hartree, respectively. Thus, the inclusion of zero point
vibrational energies lowers the barrier by 0.0016 Hartree, which is
just 1.0 Kcal/mole.

On the basis of these calculations, the reaction barrier is
estimated to be 71 Kcal/mole. This estimate is obtained by subtracting
the 5 Kcal/mole lowering due to the inclusion of electrdon correlation,
using basis B, and the 1 Kcal/mole lowering due to the inclusion of the
zero point vibrational energy, from the SCF barrier of 77 Kcal/mole
obtained using basis C. Further calculational improvements are
unlikely to lower the barrier significantly, as the largest basis used
is quite flexible, and the FORS method can be expected to incorporate
the pertinent changes in electron correlation which occur during the

course of a reaction. Taking into account the rotational barrier in
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Table 4.6. Chemically adapted reaction orbitals corresponding to SCF
MOs of Fig. 4.3 in terms of localized reaction orbitals

Occupation

|C1> |H1> ICZ> ]C3> IH2> Ich> Numbers
]c+|c>1 1/2 1/2V2  1/2 0 0 0 1.961
2
|cHe>, 1/2 -1/2V2  1/2 0 0 0 0.039
|HCe> /WZ 0 -1/WZ 0 /2 1/2/Z7  1.925
2
[HCC> -1/WZ 0 /W2 0 -1/2  1/2/Z  0.075

|cch> -1/WWZ 0 /W2 1/2/2 1/2 0 1.925
2
|cCH*> /2 0 -1/WZ 1/2/2  -1/2 0 0.075
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ethane, we finally infer a dihydrogen exchange barrier of about 74
Kcal/mole between staggered ethane and ethylene.
The origin of this large barrier is apparent from Figs. 4.4 and

4.5, While the symmetry-allowedness insures that the occupancies of

the three frontier MOs remain close to 2 along the entire reaction path,

it does not prevent the energies of these orbitals from changing

drastically. In fact, all three have significantly higher orbital
energies for the reaction intermediate than for the reactants/products.
The energy increase contributed by the CHC bonds is associated with the
fact that the two-electron two-center CH bonds of ethane become CHC
two-electron three-center bonds; a circumstance which dilutes and weakens
the binding effect and, thereby, leads to a considerable elongation of
the CH bonds with a concomitant rise in energy. For very similar
reasons, the spread of the two-electron two-center m-bond of ethylene
over both CC bonds dilutes and weakens the bonding effect of the
m-electrons, as evidenced by the lengthening of the CC bonds. compared
to ethylene. In addition, the CC m-bond is further destabilized by the
left-right antisymmetry of the hb3u MO which creates an ant{binding
effect that increases with decreasing distance between the reactants.
For the purpose of comparing the present results with the schematic
Figure 40 of Woodward and Hoffmann (1971), one can form the normalized
sum and difference of the two localized CHC three-center SCF MOs of the
transition state and the same linear combinations of the two corre-
sponding CH localized SCF MOs in ethane. (Plots of the localized MOs

were shown in Fig. 4.2.) The resulting SCF MOs have shapes which are
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very similar to the natural reaction orbitals 4ag and 3b2u’ and the
corresponding ethane orbitals shown in Fig. 4.5. The energies of these
SCF MOs are given in Table 4.7 for the reactants/products and the
transition state. In this formulation, the barrier contributions from
the CHC three-center bonds are seen to be entirely concentrated in the
orbital which is antisymmetric with respect to the CC bond bisectrix,
whereas the symmetric orbital has nearly the same energy in the transi-
tion state as in ethane. This is so because the offdiagonal Fock matrix
element between the two localized CHC MOs of the transition state is
much larger than the corresponding matrix element between the CH bonds
in ethane. This increase in the interference energy between the two
localized CHC MOs is probably due to the shortening of the CC distances
and of the distance between the central hydrogens. The orbitals hag,

3b,,» and Lb y correspond conceptually to the orbitals denoted by S(CH),

3
A(CH), and S(w) in Figure 40 of Woodward and Hoffmann (1971),

Since the D2h transition state has such a high energy, one might
finally raise the question whether there exists a nonplanar transition
state, similar to the chair or'boat form of cyclohexane, whose saddle
point is lower than the one considered here. While we have not made
an exhaustive study of all possible geometries, we have investigated
the variation of the energy for the following deformations of the planar
arrangement. The four carbon atoms were kept in a plane; all distances
between neighbor atoms were kept at their transition state values and

all bond angles at the carbon atoms were held fixed as well. These

constraints restrict the motions of the hydrogen atoms to rigid
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Table 4.7. Orbital energies of SCF MOs corresponding to the
natural FORS MOs of Fig. 4.5

Orbital Ethane/Ethylene Activated Complex Ethylene/Ethane

s(m), ub3u -0.378 -0.305 -0.378
A(CH), 3b2u -0.604 -0.506 -0.604

S{CH), uag -0.677 -0.679 -0.677
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cylindrical rotations around the left and right CC bonds, respectively,
so that the bridge hydrogens are limited to one-dimensional out-of-plane
motions and the distance between the left and right CC bonds decreases
somewhat. The maximum displacements considered were approximately those
where the angle between the CCCC plane and the bonds to the bridge
hydrogens were equal to the corresponding angles in cyclohexane, at
which point the distance between the left and right CC bonds is shortened
by about 0.15 Angstrom only. The boat form as well as chair form was
investigatéd. Specific geometric parameters and the corresponding
changes in the SCF energy are listed in Table 4.8. In view of the
strong increase of the energy relative to the D2h transition state, it
seems unlikely that there exists another saddle point describing a
concerted hydrogen exchange. The reason for this energetic behavior
must be seen in the difference between the electronic structure of this
activated complex and that of cyclohexane. Whereas the ring in cyclo-
hexane is formed by 12 electrons using 6 bonding MOs formed from 12
molecule adapted minimal basis set AOs, the ring in the transition

state at hand is formed by 10 electrons using 5 bonding MOs formed from
10 molecule adapted minimal basis set orbitals. There exlsts, thus, an
essential delocalization of at least two electrons over all four carbons.
It seems, therefore, unlikely that the CHC bridge bonds can be signifi-
cantly shortened and that the antibonding effect embodied in the hb3u

MO will disappear when the ring is made nonplanar. |t rather seems
likely that matters will get worse, because the w bonding character

embodied within the left and right halves of the hb3u MO will be lost
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Table 4.8. Energies of activated complex for out-of-plane
deformations of transition state geometry

Geometric Data Energies
2,2 eBb ¢,C,° Hpde AE(Chair)® AE (Boat)®
+0 0 2.704 3.276 0 0
+0.1 10.55 2.702 3.201 0.33 0.16
+0.3 29.19 2.685 3.038 2.98 1.46
48.17 2.628 2.75h 12.68 6.08
+ 59.18" 2.531 2.421 31.88 15.20

aComponents of bridge hydrogen positions perpendicular to
CCCC plane in bohr.

bDihedral angle between CCCC plane and CHBC planes in
degrees (HB = bridge hydrogens).

“Shortest CC distance across the ring, between left and
right Cth fragments, in Angstrom.

dShortest HH distance between left and right peripheral
hydrogens, in Angstrom.

€AE = (SCF energy of indicated geometry) - (SCF energy of
Doy, transition state) in Kcal/mole, calculated with 3-21G basis
of Binkley et al. (1979).

fNote: For cyclohexane, one has 6, = 5S4 74,
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when both halves of the transition state assume the staggered conforma-

tion appropriate to the chair or boat form.

F. Reconciliation of High Barrier and Experimental Results

The results reported here for the prototype concerted dihydrogen
exchange between ethane and ethylene imply that the intrinsic barrier
(i.e., the barrier in the absence of other factors, such as discussed
below) for the dihyrodgen exchange between alkyl and alkenyl carbons is
about 71(74) Kcal/mole. This is surprisingly large and shows that
neither the symmetry-allowed nature of the reaction nor the aromatic
character of the transition state in themselves are sufficient to
guarantee a low activation energy. The implication is that additional
factors which stabilize the transition state are required to reduce the
activation energy for dihydrogen exchange to a surmountable magni tude.

An example where such is the case is the analogous reaction
between diimide and olefins, where the formation of N2 leads to a very
large lowering in the energy of the products which, in turn, is
expected to depress the activation energy substantially. Thus, we have,

for instance,

NZHZ + Cth - N2 + C2H6 + about 90 Kcal/mole

where NoH, is assumed to be in the cis form. Pasto and Chipman (1979)
have calculated the barrier for this reaction to be about 27 Kcal/mole.
Their result is a confirmation of the results obtained in the present

investigation in the following sense: Even with the assistance of a
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very large heat of formation of the pFoducts, there still survives a
barrier as high as 27 Kcal/mole.

A carbon to carbon example is the dihydrogen transfer from cis=-9,
10-dihydronaphthalene to olefins observed by Doering and Rosenthal
(1967). With respect to this reactfon, our results lead us to agree
with the comment by Doering and Rosenthal viz. 'as the driving force in
the hydrogenation by diimide is very probably associated with the con-
tribution of the heat of formation of nitrogen to the transition state,
so the driving force in the transfer of hydrogen from cis=9,10-dihydro-
naphthalene may be dependent on the unique possibility of contributing
a part of the full resonance energy of naphthalene (61 Kcal/mole) to
the transition state." The intramolecular transfer noted by MacKenzie
(1965, 1969) is another example where the formation of an aromatic
ring lowers the activation energy.

An interesting éxample of an experimentally observed transfer,
where the product is not much more stable than the reactant, is the
intramolecular transfer observed by Hagenbuch et al. (1981). They find
an equilibrium constant of around unity, so that the system is thermally
neutral. However, the ''cage'' structure forces the ethane and ethylene
like portions of the molecule to be quite close. As noted by Hagenbuch
et al., this compression would provide part of the energy needed to
surmount the barrier. Using the geometric assumptions of Hagenbuch
et al. leads to a distance of 2.3 A across the ring, whiﬁh is much
shorter than the 2.7 K distance found for the optimal transition state

between ethane and ethylgne. SCF calculations with the 3-21G basis show
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that bringing ethane and ethylene to 2.7 K, with unrelaxed internal geome-
tries, raises the energy 33 Kcal/mole. Further compression to 2.3 A re-
quires an additional 70 Kcal/mole. Of course, some relaxation in the
ethane and erthylene molecules will reduce this requirement. Obviously,
the 0.4 A extra compression forced on the ethane and ethylene moieties in
the transfer observed by Hagenbuch et al. provides an energy input that
is a significant portion of the intrinsic barrier height reported.
Hagenbuch et al. estimate the enthalpy of activation to be 35-59 Kcal/
mole. The reduced barrier allowing the transfer to occur is due to com-
pression of the reactants, rather than great stability of the products.
Further evidence supporting a high barrier is the failure to

observe dihydrogen transfer in deuterium labeled cyclooctane (Bellamy,

1972):

No reaction is observed after 7 days at 250°C. Here the intermediate is

in the "boat' conformation. As shown above, this is even less stable

than the planar transition state.

The intrinsic barrier to the Woodward-Hoffmann allowed concerted
dihydrogen transfer is 71 Kcal/mole. Therefore, this type of transfer
can occur only in situations where the transition state Is stabilized

by some factor in addition to the symmetry allowedness.
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V. sz REACTIONS IN THE DIOXIRANE/DIOXYMETHANE SYSTEM:
APPLICATION TO OZONOLYSIS

A. Introduction

1. Chemical background

Ozonolysis of olefinic double bonds has been investigated from the
turn of the century (Harries, 1903). Ozonolysis of alkene solutions is
a common technique; the degradation to smaller aldehydes and ketones
permits identification of the original alkene. The mechanism for
ozonolysis was first proposed by Criegee (1957) and modified to account
for stereochemistry by Bauld et al. (1968). The broad outline of the

Criegee, or Bauld-Bailey mechanism for solution phase ozonolysis is as

follows:
0 N
. ’ o’ N o/o\c/ 7n —C=0
St ==y \ /\ W0
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The thermochemistry has been estimated by Wadt and Goddard (1975).
Structure }, known variously as the primary ozonide, molozonide, or
1,2,3=trioxolane, is about 50 Kcal/mole below the reactants. A primary
ozonide has never been isolated, and its structure is still somewhat
uncertain. Hiberty (1976) has found via SCF calculations that five
member rings are more stable than other possibilities for |, and that an

oxygen envelope is slightly more stable that a half chair conformation.
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~ Structure |1, known as the secondary ozonide, or 1,2,4-trioxolane, is

readily detected in solution, and lies about 35 Kcal/mole below |. The
Criegee mechanism for the conversion of | to |l is
0
J 0
—d \ c// \col
/1 D 7N\ A\ /]

I III 1T

Whether the ring opening of | involves concerted or stepwise cleavage

is unsettled, but that ring opening to the fragments shown does occur

is proven by the incorporation of dissolved aldehydes into the secondary
ozonide. Structure Ill, deliberately with only the atomic connectivity
shown above, is the crucial intermediate, and is known variously as the
Criegee intermediate, carbonyl oxide, or, with hydrogens attached, as
peroxymethylene. The Criegee intermediate was proposed to be zwitter-

ionic by Criegee (1957),

® 0 o
\?/\@

but is sometimes shown as

-®
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The nature of the Criegee intermediate is of particular interest for
ozonolysis in the gas phase, where lower pressure causes the recombined
secondary ozonide to be found in only small amounts at long reaction
times. The gas phase reaction has been of recent interest due to its
important role in photochemical smog generation (Demerjian et al.,
1974) . The major products of the gas phase reaction of ozone and
ethylene are small molecules such as H20, COZ, co, H2, H, OH, and traces
of larger molecules, e.g., formic acid and methanol (Kuhne et al.,
1976) .

In their seminal paper, Wadt and Goddard (1975), recognizing that
peroxymethylene is isoelectronic to ozone, demonstrated via GVB-CI

calculations that peroxymethylene is a singlet biradical,

This is exactly analogous to ozone and, in fact, the zwitterions shown
above best repéesent several excited states above 3.5 eV. The biradical
nature of the Criegee intermediate had been missed by theorists (Ha et
al., 1974) and experimentalists (Criegee, 1957 and Bauld et al., 1968)
alike, and has immediate mechanistic consequences. Harding and Goddard
(1978) estimated the energy for splitting the primary ozonide to form
the Criegee intermediate as about 10 Kcal/mole, leaving the fragments

some 40 Kcal/mole below the initial reactants. They calculate the
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rotational barrier to perpendicular peroxymethylene

H ()
4§\. ,/’//’ \\\\\ ~
'C. .0/
H

as 29 Kcal/mole, so that this rotation is energetically feasible.
Similar numerical estimates led Wadt and Goddard to propose that the
perpendicular form, now with both unpaired electrons in overlapping
orbitals in the CO0 plane, should undergo ring closure to form

dioxirane,

They further propose that this molecule should undergo ring opening to

dioxymethane,
~

/o’
H\ /
C

N
H \
[ ]

62/

which is also a singlet biradical, again by analogy to ozone.
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Dioxymethane can undergo a facile 1,2 hydrogen atom shift to formic
acid (downhill by 95 Kcal/mole), in a highly vibrationally excited form,
which could then decompose into a number of smaller species.

The Wadt-Goddard mechanism for gas phase ozonolysis was confirmed
by the discovery of dioxirane in 1977 by two teams performing microwave
spectroscopy and mass spectrometry studies of the low temperature gas
phase ozonolysis of ethylene. The dramatic discovery of dioxirane was
widely reported in such popularizing magazines as Chemistry, Dimensions,
and Chemical and Engineering News. The Wadt-Goddard mechanism was even

incorporated into a beer ad in the lowa State Daily:
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The actual report of the isolation of dioxirane at temperatures
below -100°C came in companion papers. Lovas and Suenram (1977) found
a number of microwave transitions attributable to an asymmetric top

with a large dipole moment. Martinez, Huie and Herron (1977) confirmed
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the HZCO2 composition by mass spectrometry. The molecular, as opposed
to radical, nature of the species was demonstrated by the ability of
these researchers to repeatedly freeze and vaporize the intermediate.
Eventually, Suenram and Lovas (1978), by preparing isotopically sub-
stituted species, were able to obtain a complete structure for dioxirane.

According to the Wadt-Goddard mechanism, ozonolysis of more complex
olefins than ethylene should yield substituted dioxiranes. To date
none have been found, which Suenram and Lovas (1978) attribute to
unfavorable vapor pressure versus decomposition temperature behavior.
Catalan et al. (1980) have presented theoretical geometries for fluorine
and methyl substituted dioxirane.

The Wadt-Goddard mechanism leading to final products is the opening
of the 00 bond of dioxirane to dioxymethane, hydrogen shift to formic
acid, which vibrationally decomposes. Martinez, Huie and Herron (1977)
found the following final products for the ozonolysis of ethylene, all
having the same composition as formic acid: CO + H20 (67%), CO2 + H2
(18%), and co, + 2H (9%). Formic acid itself has bgfn detected in the
amount of 1% by Kuhne et al. (1976). Qualitative consideration of the
electronic structhe of dioxymethane (Wadt and Goddard, 1975) shows that
the H shift to produce formic acid is highly exoergic. There is likely
no barrier to the shift, although there is no concrete evidence to
date to support this claim.

The only questionable step in the suggested decomposition of

dioxirane at temperatures over -80°C is the ring opening to dioxymethane.

Wadt and Goddard (1975) and Harding and Goddard (1978) use assumed
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geometries for both dioxirane and dioxymethane, yielding ambiguous
energy comparisons. Wadt and Goddard find dioxymethane to be 14 Kcal/
mole below the ring state, while Harding and Goddard find dioxymethane
to be 11 Kcal/mole above the ring. Karlstrom, Engstrom and Jonsson
(1979) investigated the ring opening to dioxymethane, optimizing
geometries and locating the transition state. They found dioxymethane
to be less than 2 Kcal/mole above the ring, separated by only a 15
Kcal/mole barrier. It is worth noting here that the ring form of
ozone lies 28 Kcal/mole above the biradical, open form ground state
(Hay and Dunning, 1977). The experimental isolation of dioxirane, the
theoretical demonstration of the ring opening, and the final product

analysis all firmly establish the Wadt-Goddard mechanism for gas phase

ozonolysis.

2. Object of present study

The research described here investigates the entire c2v constrained
potential energy surface of the dioxirane/dioxymethane system. Spe-

cifically, the reactions considered are

0
H + || — HC/I——>HC/ —> H +lé
Q <N\ a \ &

0 6) i

The three reactions shown above all involve extensive configuration

mixing, and as a consequence should be treated at the MCSCF level. A
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theoretical study of the first reaction, namely the insertion of singlet
methylene into singlet oxygen, has never been reported. It should be
mentioned that the C2V insertion is not expected to be the most likely
reaction route. Methylene usually attacks in a sideways rather than
head-on fashion, as for example, in the isoelectronic insertion of
singlet methylene into ethylene to produce cyclopropane (Zurawski and
Kutzelnigg, 1978). The second reaction, conversion of dioxirane to
dioxymethane, is of great significance to the ozonolysis mechanism, as
menffoned above. While this conversion has been studied by Karlstrom,
Engstrom and Jonsson (1979), their MC-Cl| results may be biased by
obtaining their MCSCF wavefunction at all points with the same ten con-
figurations. These authors extend their probe of the potential surfacé
to the transition state for the final reaction, the sz dissociation of
dioxymethane. The conversion of dioxirane to dioxymethane as well as
the C2v dissociation of dioxymethane has been investigated by Cimiraglia,
Ha and Gunthard (1982). These authors, too, may have skewed their
results by treating the reaction with a multireference Cl function using
the same six configurations as reference 1ist throughout. In addition,
they performed only partial geometry optimization. It should be
mentioned that, although H2 + 002 is a major product in gas phase
ozonolysis, these are formed, according to the Wadt-Goddard (1975)
mechanism, on a reactive path leading through formic acid.

All previous investigations on the C2V reactive path connecting
methylene and oxygen to carbon dioxide and molecular hydrogen are

incomplete in that they suffer either from inadequate configuration
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selection procedures or lack of geometry optimization. Therefore, the
FORS model has been applied to the reactions, as the predominant con-
figurations may vary greatly from point to point on the potential sur-
face. Full geometry optimizétion at the FORS level was carried out,
and the stable (in sz) structures and the transition states connecting
these relative minima on the potential energy surface were located.

The low-lying excited states between dioxirane and dioxymethane are

examined.

B. Configurational Description of the Reaction

The subsequent discussion will demonstrate that a Hartree-Fock SCF
function is completely incapable of describing the transition states
and even some of the stable structures on the C2v reaction coordinate.
Since the SCF predictions for the H2C02 system are often wrong, they
will not be discussed in any detail. A proper MCSCF methodology is
clearly essential for this reactive system.

Ideally, the full valence space type of FORS wavefunction should
be used to describe any reactive system as complicated as that of the
dioxirane system. The full valence space treats all reactive channels
on an equal footing, so that the transformation of carbon from singly
bonding two hydrogens to doubly bonding two oxygens is handled in a
single consistent and unbiased fashion. A quick check shows that, even
with the simplification due to ch symmetry, the full valence space for

a ]A state contains 42,816 SAAPs. As this is too large a number, the

1
reaction sequence is divided into two parts: first, the insertion of

methylene into oxygen to form dioxirane and subsequently dioxymethane
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. and, second, the dissociation of dioxymethane. Each part of the reac-
tion is treated with a reduced FRS appropriate to that particular reac-
tion, with the two treatments overlapping around the dioxymethane

portion of the potential energy surface.

1. Formation of dioxirane and dioxymethane

During the insertion of methylene into oxygen to form first
dioxirane and then dioxymethane, the oxygens vary from doubly to singly
to not bound. At the same time, new CO bonds are formed. However, the
CH bonds are not broken, and one lone pair possessing largely 2s
character persists on each oxygen. These four orbitals together with
the oxygen and carbon 1s inner shells are taken as the core orbital
space. In C2v symmetry notation, it consists of three a,, one b], and
two b2 orbitals as shown in Table 5.1. Here the x axis is perpendicular
to the C00 plane, the y axis is parallel to the 00 bond, and the z axis
lies on the twofold rotation axis. This core space is occupied by 6
inner shell and 8 valence electrons,

The remaining 8 orbitals form the reactive orbital space which can
be characterized from the atomic and from the molecular points of view.
The filled o and m, haif-filled n*, and empty o* shells of molecular
oxygen which arise predominantly from the 2p 0 atom orbitals allow for
correct dissociation of'O2 to 20, and permit the oxygen atoms to combine
with the methylene. On the carbon atom, only the sp hybrid lying in
the CH2 plane, and the p orbital perpendicular to the HCH plane (and
lying in the CO0 plane) are involved in the reduced FRS of a methylene

whose CH bonds are kept doubly occupied. The combined set of these
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Table 5.1. Symmetry labels for the orbitals during insertion
Symmetry Orbital 0. or CH pioxirane/
Label Type 2 2 Dioxymethane
la1 core 0 1s + 0 1s 0 1s + 0 1s
2a1 core C 1s C 1s
3a1 core 0 2p + 0 2p 0 2 + 0 2p
ha] core CH + CH CH + CH
5a, reactive 00 o 00 o
6a1 reactive C 2 CoO + CO
7a, reactive 00 = co” + co"
la2 reactive 00 n* 00 n*
1b] core CH - CH CH - CH
Zb] reactive 00 m 00 7
1b2 core 0 1s - 0 1s 01s ~-01s
2b2 core 0 %p -0 2p 0 2p -0 2p
3b, reactive 00 Co - €O
hbz reactive 00 c* 00 o*
5b, reactive Cp co* - co”
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orbitals for methylene and oxygen consists of three a;» one a,, one bl’
and three b2 MOs, as shown in Table 5.1.

For the molecule dioxirane, the two CO sigma bonds must be left-
right correlated to account for their formation as the methylene ap-
proaches the oxygen. The 00 sigma bond must also be left-right corre-
lated for that bond to be broken in forming dioxymethane. Dioxirane also
possesses filled 00 7 and n oribtals (leading to no net 00 m bonding)
which must be retained in the reactive orbital set for two reasons.
First, these orbitals correlate with the out of plane m and n* orbitals
of 02, whose in plane counterparts participate in bonding and antibonding
to the approaching CH2 group. A consistent treatment of the isolated
oxygen requires both w and w* orbitals be in the reactive set. A second
reason is that these 7w and n* orbitals are single occupied for dioxymeth-
ane. The very long 00 distance in dioxymethane removes the energy penalty
for occupying the 00 sigma antibond, so the repulsion of the out of
plane CH bond pairs causes only two electrons to populate the w and n*
shells, with four electrons in the ¢ and c*. As shown in Table 5.1, the
regctive orbitals for dioxirane and dioxymethane have the same symmetry
labels as those of the separated methylene and oxygen. Therefore, the
reactive orbital space for the insertion of methylene into oxygen to
form dioxirane and the subsequent conversion to dioxymethane is chosen
to consist of three a,, one a,, one b], and three b2 MOs, correlating
ten valence electrons.

Clearly, the electronic state of dioxirane is ]A] (one can draw a

Lewis structure for it), with the SCF configuration
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core (5a,)%(6a))%(1a,)%(26))%(3b,)?

The 1A1 FRS for the orbital space just described contains 320 configura-

tions, a number which is readily handled by the macro-iterative optimiza-
tion procedure of Dombek and Ruedenberg described in Chapter tl. The
lowest potential surface for dioxirane must connect with the lowest

1

A1 states of dioxymethane and the separated methylene and oxygen. For

dioxymethane, this state is a two configuration wavefunction:

core (5a,)2(6a,)2(36,) 2(hb) 21 (1a)% = (26)2]

so that on the average the oxygen 7 and m orbitals are singly occupied.

The biradical dioxymethane must also possess a low-lying triplet state,

namely
core (5a,)%(6a,)%(36,) (4b,) 2 (1a,)  (1b)'

The separated methylene and oxygen must be in a combined 1A1 state
to form the ground state of dioxirane. The ground states of both
molecules are triplets, which can, of course, couple to a combined
singlet. However, labeled in the combined C2v coordinate system, triplet
methylene is in a 3B2 state and triplet oxygen is 381, so that the com-
bined spatial symmetry is AZ’ not A]. Therefore, the triplets in a sz
path correlate with an excited state of dioxirane. Of course, singlet
oxygen and triplet methane, or triplet oxygen and singlet methylene
cannot react adiabatically to give the singlet dioxirane. Singlet

methylene and singlet oxygen can react to form the ground state of
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dioxirane, as singlet methylene is in a 1A1 state, and in C2v symme try
the degenerate singlet A state of O2 resolves into a 1A] and a 181
component. Consequently, at long separations, one expects the two

configurations
core (Sal)2(6a1)2(7al)2(2b1)2[(3b2)2 - (1a2)2]

to be predominant. This function is the product of the SCF function
for methylene and the open shell SCF function for the 1A1 component of
singlet delta oxygen. Note that in lower symmetry than CZv’ i.e.,
sideways attack of methylene, the reaction of triplet methylene and
triplet oxygen to form singlet dioxirane is not forbidden on orbital
symmetry grounds.

The two methylene reaction orbitals generate a two configuration
FRS for ]Al methylene. The six oxygen reaction orbitals lead to a FRS
containing 18 SAAPs for the 1Ag state of oxygen. The product wavefunc-
tion for the two isolated species thus contains 36 SAAPs (out of the
full 320) with nonvanishing coefficients.

The dominant configurations for the description of separated singlet
methylene and singlet oxygen, dioxirane, and dioxymethane given in the
preceding paragraph are different. These changes in the character of
the lowest 1A state must be due to avoided crossings with the second

1

'Al surface. Because of these avoided crossings, methylene plus oxygen,

dioxirane, and dioxymethane are each separated by a barrier.
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2. Dissociation of dioxymethane

During the course of the C, dissociation of dioxymethane to

2v
molecular hydrogen and carbon dioxide, the CH bonds are broken, an HH
bond forms, and CO pi bonds are formed. However, the CO sigma bonds
formed during the methylene insertion remain as do the 0 lone pairs,
one on each oxygen. These four persistent orbitals are now kept in
core together with 1s inner shells,

To correctly treat the CH bond breakage, these bonds must be left-
right correlated by including orbitals arising from the hydrogen 1s and
two carbon sp hybrids. Concomitant with the hydrogen separation, the
two hydrogen 1s orbitals form the bond and correlating antibond of
molecular hydrogen, giving a two configuration wavefunction for an
isolated hydrogen molecule.

The carbon dioxide fragment must form new pi bonds. For linear
carbon dioxide, the pi bonding, nonbonding, and antibonding orbitals
arise from the two Py orbitals on each oxygen and the carbon. The two
sp hybrids on carbon, following the splitting off of the hydrogens will
become P, orbitals as the CO2 linearizes. The other two sp type sigma
hybrids on carbon are involved in bonding to a hybrid orbital on oxygen
forming the persistent CO sigma bond orbitals which are kept in the
core as is the one lone pair orbital on each oxygen. The remaining two
orbftals on each oxygen form, in dioxymethane, the nearly doubly
occupied 00 sigma bond and antibond, and the almost singly occupied 00
pi bond and antibond. As the dissociation proceeds and the CO2 becomes

linear, these pi orbitals become oxygen P orbitals out of the original
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C00 plane, while the sigma orbitals lose their s character, becoming Py
orbitals in the original C00 plane. Thus, the carbon and oxygen orbitals
needed to describe dioxymethane as the hydrogens are splitting off
become the full set of pi orbitals for linear COZ' For the 12; ground
state of COZ’ the FRS built from the full w orbital space contains 33
configurations. Note that this orbital space cannot properly dissociate
COZ’ but does correctly describe the bénding of COZ'

The symmetry labels of these orbitals are shown in Table 5.2. It
is apparent that the orbitals used to describg dioxymethane, and the
orbitals needed to describe separated hydrogen and carbon dioxide belong
to the same symmetries: there are three a;» one a,, three bl’ and one
b2 MOs correlating 10 valence electrons. The core orbital space con-
sists of four a, and three b2 orbitals, also shown in Table 5.2, con-
taining six inner shell and eight valence electrons. The 1A1 FRS again
consists of 320 configurations. |t contains all 2 x 33 SAAPs of the
dissociated states of H2 and COZ’ so that after dissociation 66 of the
320 SAAPs have nonvanishing coefficients.

To clarify the difference in the choice of core, reactive, and
virtual MOs for the insertion and ring opening reactions, and that for
the dissociation reaction, Table 5.3 compares all these MOs for dioxy=-
methane, where the two FRS treatments overlap. |t should be noted that
those orbitals (CO and CH bonds and antibonds) which are switched
between core, reactive, and virtual spaces carry a different ordering
number in their symmetry labels in the two cases. It is obvious that

part of the 320 SAAPs are the same and part different in the two cases.



146

Table 5.2. Symmetry labels for dioxymethane dissociation

Symmetry

Orbital

Orbital Type Dioxymethane COZ or H2
1a1 core 0 1s + 0 1s 0 1s + 0 1s
2a1 core C 1s C 1s
3a, core 0 %p + 0 &p 0 2p + 0 &p
ha] core Co + CO co + C0
Sa1 reactive 00 ¢ CO2 T,
6a1 reactive CH + CH H2 o

% % E
7a1 reactive CH + CH CO2 ™
la2 reactive 00 = CO2 "g
lb1 reactive CH - CH CO2 L
2b reactive 00 w co n“
1 2 u
3b] reactive CH = CH H2 g
1b2 core 0 1s - 0 1Is 01s - 0 1s
2b2 core 0% -0 2p 0 2p -0 2p
3b2 core Co - CO co - CO
4b2 reactive 00 o CO2 "g
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The wavefunction for dioxymethane consists predominantly of two

configurations
core (5a,)%(6a,)%(1b,) % (b,)*1(1a,)? - (26)%)

This is exactly the same as the two predominant configurations given
above in the discussion of the insertion FRS, as may be seen by writing
out explicitly the core portion in each case and interpreting the
symmetry labels according to Table 5.3. The predominant term in the
wavefunction for separated hydrogen and carbon dioxide is the product

of their SCF functions,
2 2 2 2 2
core (Sal) (6a1) (laz) (1b1) (hbz)

in C2v notation. As this is formally the same as the first term of the
basic dioxymethane function, the changes in electronic structure during
the dissociation of dioxymethane are simpler than during the methylene
insertion, or conversion of dioxirane to dioxymethane. An MCSCF treat-
ment of the predominantly two configuration dioxymethane is a necessity,
but the wavefunction actually simplifies during the course of the dis-
sociation to a single predominant term. The four electrons in the CH

bonds form the H2 bond and the out of plane carbon dioxide bond.

Simultaneously an in plane pi bond forms.
C. Calculational Details

1. Selection of reaction coordinate

Much chemical significance is attributed to stationary points on

molecular potential energy surfaces, where the first derivatives of the
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the two FRS orbital sets

Insertion an
Ring Opening

d

Common

Dissociation

Core Orbital Space
0 1s + 0 1Is

1s = 0 1s

1s

wp + 0 2p

&p - 0 2p

o O O O

1b

L R e el bl L L L

Reactive Orbital Space
00 o
00 o*
00 «
00

Virtual Orbital Space
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total energy with respect to all nuclear coordinates vanish. Stable
molecules are at an energy minimum with respect to all nuclear
coordinates, so that all second derivatives (force constants) are
positive and, hence, all molecular frequencies are real. The location
of such stable structures is straightforward; the energy must be
minimized with respect to all nuclear coordinates.

A transition state is a saddle point on the potential surface
with one and only one negative second derivative and, of course,
vanishing first derivatives. Starting out in the direction of negative
curvature and proceeding downhill leads to products or back to reactants.
For this reason, this direction is termed the reaction coordinate, and
for motion along the reaction coordinate, the energy is maximal at the
transition state. At the transition state, the reaction coordinate
corresponds to a normal mode, whose force constant (proportional to the
second derivative of the energy) is negative. The formal frequency
(proportional to the square root of the force constant} is thus
imaginary, implying that motion along the reaction coordinate falls off
to reactants or products without return (''vibration'') to the transition
state. |

The location of a transition state is a more difficult problem than
that of finding stable structures since unconstrained minimization of the
the energy causes collapse into either the reactants or products. One
possibility is to minimize the sum of the squares of all the first
derivatives of the energy with respect to nuclear displacement. This

length of the gradient vector goes to zero at transition states as well
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as at stable structures. Recently the analytic calculation of energy
gradients has become a very powerful tool for the investigation of
potential surfaces (Flanigan et al., 1977). Unfortunately, most current
programs using gradients are limited to SCF type wavefunctions. Dupuis
(1981) has recently extended the gradient formalism to MCSCF wavefunc-
tions, but programs to calculate MCSCF gradients are not yet common.
Since the ALIS program system does not currently permit the analytic
calculation of gradients, a more cumbersome ''brute force' method is used
in the present study. Were it possible to know the reaction coordinate,
the minimization of the total energy in all Airections save the reaction
coordinate and maximization of the energy along the reaction coordinate
would yield the transition state. Therefore, if it is possible to
select a ''good'' reaction coordinate, then the following procedure may
be applied. At each value of this reaction coordinate, the total energy
is minimized with respect to all other coordinates. A plot of the
energy versus the chosen reaction coordinate after optimization of the
other coordinates possesses minima, which are the stable structures, and
maxima which are the transition states. The reliability of this approach
compared to the accurate gradient method is related to the ability to
preselect a reaction coordinate that enters the transition state in a
direction close to the eigenvector corresponding to the imaginary fre-
quency. This approach is also inefficient in computer time, as energy
evaluations are required at more geometries than with an analytic

gradient approach.
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‘In applying this method to the HZCO2 surface, a reaction coordinate
had to be chosen. Clearly the distance from the methylene to the oxygen
molecule governs the progress of the insertion reaction. Therefore,
the distance from the carbon atom to the midpoint of the 00 line is
chosen as the reaction coordinate for the methylene insertion to form
dioxirane. This distance is also taken as the reaction coordinate for
the ring opening to dioxymethane, as the ring strain engendered by
pushing the methylene group even closer to the 00 bond than in the near
equilateral triangular dioxirane will cause the 00 bond to be broken.
Similarly, for the dissociation of dioxymethane to carbon dioxide and
hydrogen, the reaction coordinate is defined. as the distance from the
carbon atom to the center of the HH line.

Assuming a C2v symmetry with the HCH plane orthogonal to the 0CO
plane, the geometry of the H2C02 system is described by four coordinates.
Thus, three coordinates must be optimized for each value of the above
defined reaction coordinate. During the insertion and ring opening
reactions, these coordinates can be taken as the CH distance, the HCH
angle, and the CO distance. As CH bond distances vary very little, the
optimizations can be reduced to two coordinates by assuming the CH bond
length is 1.09 A. The CO bond distance is a natural coordinate to
optimize around the dioxirane/dioxymethane portion of the surface. At
long distances of the methylene to oxygen, the optimization of the 00
bond length in place of the CO distance is more natural. Optimal values
for both the 00 and CO distances are given below as a function of reac-
tion coordinate but, of course, only one of these variables is

independent.
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For the dioxymethane dissociation, no similar reduction of the
optimization problem can be made. The coordinates which are optimized
are the HH distance, the CO distance, and the 0CO angle, at each value
of the carbon to H2 reaction coordinate. The CO bonds shorten con-
siderably as they go from single to double bonds, so they cannot be
fixed as the CH bonds were for the insertion reaction.

The geometry optimization for a particular value for the reaction
coordinate is done by quadratic fit to energies calculated at several
trial values of the coordinates being optimized. For optimization of
two or three coordinates, these fits require energy calculations at
six or ten points, respectively. Least mean square fits are made if
more than the minimum number of points are available. |If the trial
points are well-selected, the optimal geometry is given by the minimum
of the fitted quadratic. |f the initial guess of the molecular struc-
ture is less good or the surface is not very quadratic, more energy
evaluations at better chosen trial geometries are required. A typical
optimization requires ten or fifteen energy evaluations to optimize two

or three independent coordinates.

2. Basis sets

In view of the large number of different geometries for which the
wavefunction and energy must be obtained, the size of the basis set
must be kept relatively small. The basis set used for the geometry
optimization is (8s,4p/3s,2p) on the heavy atoms, and (3s/2s) (unscaled)
on hydrogen. This totals 33 QBOs, which is manageable for the large

number of calculations needed. It is well-known, however, that bond
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lengths in the isoelectronic molecule ozone are not predicted well unless
polarization functions are included. Hay and Dunning (1977) found 00
bonds to be 0.1 A too long when polarization functions are not used in
ozone, but that thi; overestimate is easily corrected by including a
single set of d functions. Unfortunately, adding d orbitals on the
heavy atoms to the basis used here, even with the 3s component trans-
formed away, would increase its size to 48 QBOs, making the geometry
optimizations too costly. Therefore, the smaller unpolarized basis is
used for geometry optimization, even though this probably systematically
overestimates CO and 00 bond lengths by around 0.1 A. A larger basis,
including also polarization functions on the hydrogen, is used to obtain
the energy at the various stable geometries and. transition states, once
these are located with the smaller basis. This larger basis, which is
(12s,6p,1d/3s,2p,1d) on the heavy atoms and (4s,1p/2s,1p) (unscaled) on
hydrogen contains 55 QBOs and should give more accurate estimates of
the reaction energetics.

The primitive orbital sets are the even-tempered Gaussian bases
given by Schmidt and Ruedenberg (1979) contracted in Raffenetti style

as described in Chapter Ii. Polarization exponents are taken from

Dunning and Hay (1977).

D. Results and Discussion

1. Formation of dioxirane and dioxymethane

For each value of the methylene to oxygen reaction coordinate, both

remaining geometric parameters have been optimized. The geometry
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optimizations were conducted at the FORS rather than SCF level. Optimi-
zation of the orbitals in the 320 SAAP reaction space used to describe
the insertion reaction typically required eight to fifteen configura-
tions in the MCSCF calculations. The largest number of SAAPs in the
MCSCF orbital optimizations is required around the two transition
states, and for dioxymethane, where two dominant configurations must be
correlated. The configurations which dominate the expansion of the FORS
wavefunction vary greatly as the reaction coordinate is changed, and
even vary somewhat during the optimization of the other geometric
coordinates for a fixed reaction coordinate. The MCSCF configurations
used for the orbital optimizations were, for each geometry, the pre-
dominant configurations based on natural reaction orbitals in the final
FORS CI| wavefunction at that particular geometry. For the methylene
insertion and the subsequent conversion of dioxirane to dioxymethane,
about 30 different SAAPs in total were used for the MCSCF optimizations
at one or another of the geometries considered. The final wavefunctions
were in all cases 320 SAAP CI functions based on the optimal orbitals.
The energies of the C2v H2C02 system during the insertion of
methylene to form dioxirane, and the ring opening to form dioxymethane,
are shown in Fig. 5.1. The optimal geometric parameters for each value
of the reaction coordinate are given in Table 5.4 and are displayed in
Figs. 5.2, 5.3 and 5.4. On the basis of these graphs, a number of
geometries were interpolated between the optimized ones and the energies
were rigorously optimized at these interpolated geometries to flesh out

the energy curve in Fig. 5.1. These interpolated geometries are also
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Table 5.4. Geometries and energies for formation of dioxirane and
dioxymethane?

Reaction 00 co HCH FORS
Coordinate Bond Bond Angle Energy
(R) Ry (A) (degrees)  (hartrees)

infinite 1.334 4,547 105.7 -188.424014 CH, + 0,
3.704° 1.334  3.764  105.7  -188.424292

3.175° 1.334  3.244 105.7 -188.423173

2.910°  1.33%  1.986  105.7  -188.420555

2.805° 1.334  2.883 105.7  -188.418625

2.646 1.336  2.729 104.9 -188.413704  trans. st.
2.514 1.728  2.658 132.9 -188.414786

2.328 1.650  2.470 136 .4 -188.427027

1.852 1.580 2.014 137.7 -188.493404

1.588 1.578  1.773 132.4 -188.545905

1.323° 1.640  1.557 122.0  -188.587008

1.217 1.679  1.479 118.8 -188.594272  dioxirane
1.111P 1.799  1.430 114.0 -188.590101

1.032° 1.958  1.422 112.0 -188.581172

0.979 2.041  1.414 112.2 -188.575312  trans. st.
0.942 2.348  1.505 115.1 -188.576436

0.873 2.384  1.478  113.6 -188.582865

0.794 2.4505 1.4k 112.5 -188.586668

0.751b 2.418  1.424 111.2 -188.587758 dioxymethane
0.714 2.456  1.421 110.0 -188.587318

0.688°  2.466 1.412  108.5  -188.586668

0.582 2.5450  1.397 106.7 -188.579338

aStationary points indicated in final column. In all cases,
CH distance is 1.09 A.

bThese geometries are interpolated between the optimal ones.
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given in the various figures and table. The transition states and stable
structures are the maxima and minima on the energy curve shown in
Fig. 5.1.

Inspection of Figs. 5.2, 5.3 and 5.4 shows that there are sudden
changes in the geometric parameters as the system crosses the two bar-
riers. This is because the barriers originate in avoided crossings of
the two lowest 1A1 surfaces, so that on either side of the barrier on
the ground state surface, the electronic structure which determines the
geometry is quite different.

The 00 bond distances in Fig. 5.2 are quite revealing. The double
bond of molecular oxygen is lost just as the barrier is crossed, which
is reflected in the sudden jump in the 00 distance to a value character-
istic of single bonding. This bond is subjected to increasing strain
as the system passes through dioxirane, lengthening and finally rup-
turing, as the 00 distance increases to 2.4 R as the barrier to ring
opening is surmounted.

There are similar sudden changes in the HCH angle, shown in
Fig. 5.3. Just after crossing the insertion barrier, the HCH angle
increases by thirty-five degrees. This is presumably due to the lone
pair of singlet methylene being drawn to the incipient CO bonds. The
reduced electron repulsion due to lower electron density near the carbon
would cause the HCH angle to open. This explanation is consistent with
the sharp change to 00 single bonding noted above, indicating the oxygen
atoms begin bonding to the approaching carbon right as the barrier is

crossed. The HCH angle then generally decreases as the 0CO angle
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increases. This decrease is a ''conservation of angles' around the tetra-
coordinate carbon as the 0CO angle opens. The decreasing trend in the
HCH angle is interrupted at the conversion barrier. This three degree
increase is rather insignificant compared to the loss of the 60 bond,
and the downward trend in the HCH angle continues as the 0CO angle
widens still further.

Figure 5.4 shows the CO distance. This coordinate is not independ-
ent from the 00 distance, and the slight jumps in the CO distance are
merely a reflection of the sudden changes from doubly to singly to not

bound oxygens, seen more clearly in Fig. 5.2.

2. Dissociation of dioxymethane

The three independent coordinates of the HZCO2 system during the
dissociation were optimized for each value of the carbon to hydrogen
midpoint reaction coordfnate. These optimizations were carried out in
the 320 SAAP full reaction space used to describe the dissociation.
Typically, seven to ten SAAPs were used in the final MCSCF orbital
optimization of the full reaction space. The leading SAAPs are little
changed in proceeding from dioxymethane to hydrogen and carbon dioxide.
The major shift is the increase in importance of one of the two pre=
dominant dioxymethane SAAPs at the expense of the other to become the
single predominant configuration for H2 and COZ'

The energies during the dissociation reaction are plotted versus
reaction coordinate in Fig. 5.5. Dioxymethane is separated in C2V
symmetry from the dissociation products by a significant barrier. The

CH, HH and CO distances and the 0CO bond angle during the course of the
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dissociation are given in Table 5.5. These values are displayed in
Figs. 5.6, 5.7, 5.8 and 5.9.
The various geometric parameters shown in Figs. 5.6 through 5.9
are much simpler than those found for the insertion reaction. In
keeping with the gradual change in the FORS wavefunction during the dis-
sociation, the various bond lengths and angles vary smoothly from their
value in dioxymethane to those in the dissociation products. It is
apparent from the figures that the dissociation reaction is essentially
complete by the time the hydrogens are 2.4 A away from the carbon dioxide.
Comparison of Table 5.5 with Table 5.4 shows that the calculated
geometries for dioxymethane are slightly different because of the change
in the configurations from those needed to describe the formation of
dioxymethane to those needed for its dissociation. These geometry dif~-
ferences are, however, small. This dichotomy would not result, of course,
if the full valence space were used to treat the entire reaction path.
The optimal CH bond lengths found for the early phases of the dioxy-
methane dissociation are in the range 1.07 R to 1.10 3. Thus, the

assumption of 1.09 A for the CH bond length throughout the insertion

reaction is justified.

3. Accuracy of calculated geometries

The calculated geometries for the various stationary points on the
H2C02 surface were given in Tables 5.3 and 5.4. In the case of the
stable molecules, comparison with the experimentally known geometries

is possible. For singlet oxygen, the FORS bond length is calculated to

be 1.334 3, while the experimental length is 1.216 A (Huber and
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Table 5.5. Geometries and energies for the dissociation of dioxymethane®

Reaction CH HH co 0co FORS
Coordinate Bond Bopd  Bond Angle Energy
(A) (A) (A) (A)  (degrees) (hartrees)

0.500 1.070 0.892 1.417  116.6  -188.558936

0.600° 1.082 1.800 1.405  118.0  -188.565742

0.650b 1.088 1.745 1.402 119.0 -188.566639 dioxymethane
0.700 1.105 1.710 1.394  120.0  -188.565906

0.800° 1.138  1.620 1.380  122.0  -188.558842

0.900 1.179  1.523 1.394  125.4  -188.544962

1.000 1.214  1.377 1.330  131.3  -188.522632

1.050° 1.222  1.250 1.310  135.0  -188.518517

1.081° 1.226  1.155 1.296  138.0  -188.516626 trans. st.
1.100° 1.225 1.080 1.285  139.0 - -188.517908

1.150 1.238  0.916 1.258  142.9  -188.527790

1.200° 1.266 0.808 1.226  147.5  -188.537083

1.300° 1.357 0.780 1.200  152,0  -188.556565

1.400 1.452  0.770 1.190  155.0  -188.576254

1.600° 1.645 0.765 1.183  162.0  -188.621415

1.800 1.850 0.763 1.175  168.0  -188.653772

2.100° 2.13% 0.761 1.174  175.0  -188.681189

2.400° 2.430  0.761 1.174  178.0  -188.693096

infinite infinite 0.761 1.174  180.0  -188.700398 H, + C0,

aStationary points indicated in final column.

bGeometry interpolated between optimized values.
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Herzberg, 1979). For dioxirane, the FORS CO and 00 bond léngfhs are
1.479 A and 1.679 K, respectively, compared to the experimental values
of 1.388 A and 1.516 A (Suenram and Lovas, 1978). Thus, these bond
lengths are calculated in the FORS model to be from 0.1 R to 0.15 A too
long. These errors can be attributed to the lack of polarization func-
tions in the basis set. Comparable errors of 0.1 R were found by Hay
and Dunning (1977) in very similar GVB-C| calculations on ozone, when
polarization functions were omitted.

Dioxirane itself is well described within the SCF approximation,
and the small basis used here gives an SCF geometry for dioxirane with
€O and 00 bond lengths of 1.434 A and 1.518 R, respectively. These SCF
values are consistent with previous SCF calculations using small
unpolarized bases (Yamaguchi et al., 1980 and Catalan et al., 1980).
Similarly, the SCF bond length for singlet oxygen is 1.202 A. The
errors in the SCF bond lengths are significantly reduced from the FORS
values. The elongated FORS bonds are caused by the inclusion of left-
right correlation in the CO and 00 sigma bonds. |t should be emphasized
that this correlation is absolutely essential in describing the forming
and breaking of these bonds. Presumably the calculated FORS heavy atom
bond lengths for the transition states to the formation of dioxirane
and dioxymethane suffer ‘the same systematic 0.1 A or so elongation due
to the lack of polarization.

For CO0,, the CO sigma bonds are not left-right correlated. These

2’
bonds are calculated to be 1.174 ﬂ, just 0.01 A longer than the experi-

mental length of 1,162 A (Herzberg, 1966). For Hy, whose bond is
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correlated, the calculated length is 0.761 K, again quite close to the
experimental value of 0.741 A (Huber and Herzberg, 1979). Presumably
the geometries calculated for the dissociation reaction are more
accurate than those for the methylene insertion reaction. The CO dis-
tance for dioxymethane is slightly shorter when optimized in the dis-

sociation FRS rather than the insertion FRS.

L., Energetics

In Table 5.6 are collected the energies of all stationary points
on the HZCO2 surface relative to the energy of the ring molecule
dioxirane. In addition to the energies quoted in Tables 5.3 and 5.4,
this table also includes the results for FORS calculations using the
double zeta polarized basis, at the optimal geometries determined with
the smaller basis. For those points which are described within the SCF
approximation, SCF energy differences for both bases are included in
the table, again calculated at the optimal FORS geometries. Since two
different FORS functions were used, the entries for the barrier to
dissociation and for CO2 + H2 are appropriately adjusted in Table 5.6.
The adjustment consists of shifting the energy curve for dissociation,
shown in Fig. 5.5, to bring the energy for dioxymethane into coincidence
with the energy of dioxymethane in Fig. 5.1.

The FORS results using either the small or polarized basis show a
small barrier (6-9 Kcal/mole) to the insertion of singlet methylene into
singlet oxygen. The exothermicity to dioxirane is 105-107 Kcal/mole,
the barrier to ring opening is 12 Kcal/mole, and the open form, dioxy-

methane, is 4-8 Kcal/mole above the ring. Note the contrast with ozone,
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Table 5.6. Energetics in the C, H,CO, system”

2v 2772
SCF Results FORS Results b c

Molecule Small DZP Basis Small DZP Basis  KEJ CHG
CH, + 0, 111.9 114.4 106.8 105.3
trans. st. 113.3 114.2
dioxirane 0.0 0.0 0.0 0.0 0.0 0.0
trans. st. 11.9 12.0 15.2 39.2
dioxymethane L 8.3 1.7 25.6
trans. st. 35.5 19.9 28.3 63.0
002 + H2 -95.8 -~114.2 -79.8 -93.0 -108.5
overall
exothermicity ~-207.9 -228.6 -186.6 -198.4

9kcal/mole relative to dioxirane.
bKarlstrom, Engstrom and Jonsson (1979).
cCimiraglia, Ha and Gunthard (1982).

dExperiment is =221.5 Kcal/mole. See text.
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where the ring is the less stable form. The major change in using the
polarized basis is durfng the dissociation of dioxymethane. The barrier
to dissociation is lowered from 31 Kcal/mole to 12 Kcal/mole with the
polarized basis. Finally, in the small basis, hydrogen and carbon
dioxide lie 80 Kcal/mole below dioxirane, and in the polarized basis
these dissociation products are 93 Kcal/mole lower than the ring.

The overall exothermicity of the reaction can be estimated. The
heats of formation for methylene and carbon dioxide at zero degrees
are 93.9 and -94.0 Kcal/mole, respectively (Wagman, 1968). The excita-
tion energy to form singlet oxygen is 22.6 Kcal/mole (Huber and Herzberg,
1979) . Most recent large scale Cl calculations place singlet methylene
10 Kcal/mole above the triplet ground state (see, e.g., Roos and Siegbahn,
1977). The exothermicity from singlet oxygen and singlet methylene to

carbon dioxide and hydrogen is, therefore,

_ 0 0 } 0 3.~ 1 } 0 3
AH = AHf(COZ)"‘AHf(Hz) {AHf(oz, zg) + T( Ag)} {AHf(CHZ, 31)
+ 1))
= =94.0 + 0 - (0 + 22.6) - (93.9 + 10)

= =220.5 Kcal/mole

The zero point vibrational correction to this is quite small. The zero
point energies are 2.1 Kcal/mole for singlet oxygen (Huber and Herzberg,
1979), 10.5 Kcal/mole for singlet methylene (Roos and Siegbahn, 1977),
7.3 Kcal/mole for carbon dioxide (Herzberg, 1966), and 6.3 Kcal/mole
for hydrogen (Huber and Herzberg, 1979). The products thus have 1.0

Kcal/mole more zero point energy than the reactants, which increases the
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overall exothermicity, with zero point motion excluded, to =-221.5
Kcal/mole.

The calculated relative energies for the first few stationary
points in Table 5.6 are quite consistent. The FORS results are changed
little upon use of the polarized basis, and the relative stabllfty of
dioxirane and the reactants is not changed greatly from the SCF value.
This consistency means the FORS energies from reactants up to dioxy-
methane are probably fairly accurate. The relative position of carbon
dioxide and hydrogen is much less certain. The FORS results place the
products some 20-30 Kcal/mole higher than SCF calculations. There are
even big discrepancies when the same type of wavefunction is used in a
larger basis. Clearly the dissociation of dioxymethane is quite
exothermic, with a significant barrier of 12-31 Kcal/mole to the C2v
dissociation. The overall FORS exothermicity in the double zeta
polarized basis is -198.4 Kcal/mole, which is rather smaller than the
estimated total exothermicity of -221.5 Kcal/mole. The major source
for this error is likely in the position of the final products, with
the rest of the energetics shown in Table 5.5 more reliable.

The calculated barrier to C2v insertion of singlet methylene is so
small that a lower symmetry attack to methylene is likely to be bar-
rierless. The remainder of the potential curve supports the VWadt-
Goddard (1975) mechanism for ozonolysis. The C,, ring opening of
dioxirane has only a small barrier and, hence, is quite likely, as
dioxirane is formed in ozonolysis with an excess of vibrational energy.

The CZv dissociation of dioxymethane has a somewhat larger, additional
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barrier. The existence of this barrier means the breakup of dioxy-
methane probably proceeds through the non-C2v hydrogen shift to formic
acid suggested by Wadt and Goddard. This very exothermic, non--C2V decay
route would'explain why dioxymethane has never been reported experi-

mentally, even though it is calculated to be stable within C2v symmetry.

5. Spectrum during ring opening

As dioxirane undergoes ring opening to form dioxymethane, the 00
sigma bond lengthens, meaning this bond is extensively left-right

correlated. Thus, the wavefunction changes from
.. oinly d 1A1(li'n)

for dioxirane to the limiting form

. wznﬂz{cz - 0%2} ' 1A1(4ﬂ)

just as the barrier is reached. Here o, c“, m, and T refer to the
various 00 orbitals, and are, more formally, the appropriate ars b2’ b1,
and a, orbitals. For dioxymethane, the 00 distance is long enough so
that the c* orbital is nearly as low as the o orbital. Hence, the ¢
orbitals can accept two electrons from the m orbitals, which suffer

pair repulsions by the CH bonds. The wavefunction for dioxymethane is,

therefore, dominated by
. czcxz{nz - nhz} ]A1(2n)

The barrier to the ring opening is caused by the avoided crossing of the
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Lw and 2w ]A1 surfaces, and near the barrier there should be a low=lying
]Al excited state.

Near the barrier these four oxygen orbitals are quasidegenerate,
and can be populated with the six electrons in a variety of ways. A

large number of singlet and triplet states are possible. The most

important of these is triplet dioxymethane,

. ozohzﬂ]wh1 382(2n)

which is the triplet state corresponding to the singlet biradical dioxy-
methéne. Due to the small overlap of the localized orbitals containing
the unpaired oxygen electrons, this triplet should be quite close to

the singlet state of dioxymethane.

The triplet state corresponding to the ]Al(hn) state is
. w2t 3Bz(hﬂ)

38

which undergoes an avoided crossing with the 2(21r) state near the
barrier in the ground state singlet. Unlike the 1A1(Lur) state, whose
minimum is dioxirane, the triplet state is not expected to possess a
relative minimum, as at the short bonding 00 separation of singlet

dioxirane, the energy of the 00 o is raised significantly.

Other low energy possibilities are

%92 % % %
. czw 20 1ﬂ] + ... O znzo]n 1 1’3A2(31r)

%1 4 %2 %
. 02ﬂ2071"=1 + ... 0 2" 201n] 1’381(31r)
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These states with three m electrons are at their lowest when all four 00
orbitals are close in energy and, thus, should show minima near the
barrier in the ground singlet surface. These states also favor geom-
etries with long 00 distances, keeping the 0* antibonding orbital at
low energy. |
The existence of this rich spectrum was first recognized by Wadt
and Goddard (1975). Vertical excitation energies for dioxymethane were
reported by these workers, and also by Harding and Goddard (1978). To
date, nothing concerning these states for dioxirane or at other geom-
etries has been reported, and no experimental data are available.
Vertical excitation energies from the lowest 1A1 surface at various
values of the carbon to oxygen midpoint reaction coordinate to the
seven excited states listed above have been calculated, The orbital
space used to describe each state is the same as that used for the forma-
tion of the lowest singlet state of dioxirane and dioxymethane. That
is, the four crucial oxygen orbita]s are kept in the reactive set, as
well as the CO bond and antibonds. The number of SAAPs in the FORS for

the 1A and 1B states are 280, and the three triplet functions each

2 1
have 384 SAAPs. The energy of each state is obtained by MCSCF optimiza-
tion in the FORS space used for that state.

The low-lying singlet states are shown in Fig. 5.10, and the
triplets are in Fig. 5.11. Near the barrier the eight lowest states lie
within a 0.4 eV (9 Kcal/mole) range. The excited states show a discon-

tinuity at the barrier in the lowest singlet surface. This discon-

tinuity is due to the great difference in 00 separations on either side
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Figure 5.10, Low-lying vertical singlet states during dioxirane ring
opening
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Figure 5.11. Low-lying vertical triplet states during dioxirane ring

opening
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of the 1A1 barrier. As all of the excited states occupy the 00 o*
orbital, these states favor much longer 00 distances than dioxirane has.
The discontinuity is, therefore, a consequence of using the geometries
of the llA1 state for all other states. The adiabatic excitation energy
to these states of dioxirane should be much less than the vertical
excitation energies given here.

Among all these states, the 138

o State of dioxymethane is of
special interest. At the dioxymethane equilibrium geometry, its vertical
excitation energy is calculated here as 2.0 Kcal/mole. The best calcu-
lation on this splitting is by Siegbahn (1979). He found, using the
singlet dioxymethane geometry and»the basis set of Karlstrom et al.
(1979) and an MCSCF function for both singlet and triplet dioxymethane
identical to that used here, that the singlet-triplet separation is

2.2 Kcal/mole. A partial first order Cl calculation changed this
splitting very little, to 2.0 Kcal/mole. Wadt and Goddard (1975) found
this splitting to be 0.7 Kcal/mole, and Harding and Goddard (1978)
report 0.9 Kcal/mole. All calculations are in agreement that the
splitting is small, about two Kcal/mole at the equilibrium geometry of
the singlet, and that the singlet is lowest. A FORS geometry optimiza-
tion of triplet dioxymethane yields a geometry very similar to the
singlet, namely a reaction coordinate of 0.766 A, a CO bond of 1.418 &,
and a HCH angle of 111.9°. This geometry optimization lowers the
triplet by just 0.5 Kcal/mole to 1.5 Kcal/mole. The triplet actually

lies just below the singlet immediately after the ring opening barrier,

as seen in Fig. 5.11.
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Near the ground state barrier the seven excited states given here
are all quite close to the ground singlet surface, and within 0.9 eV of
the dioxirane energy. Not all possible occupations of the four 00
orbitals with the six electrons are included here. These additional
states have been examined as higher roots of the lower states, and some
MCSCF optimizations on these higher states. There is a large gap
between the states shown in Figs. 5.10 and 5.11 before these additional
states are reached. Near the barrier these additional states form a
group lying some 4-5 eV above the dioxirane energy, and higher elsewhere.

Some of these states involve excitations from the CO bonds.

6. Comparison to previous work

In a previous theoretical study of the conversion of dioxirane to
dioxymethane, Karlstrom et al. (1979) used an MCSCF wavefunction con-
sisting of the same ten configurations, all double replacements, at all
points on the potential surface between dioxirane and dioxymethane.
These ten configurations are all contained in the 320 SAAP reaction
space used here to describe the insertion reaction and formation of
dioxirane. |In view of the large changes in the dominant portion of the
FORS wavefunction between dioxirane and dioxymethane, this means
Karlstrom et al. (1979) represented dioxirane and dioxymethane with only
five configurations each. This is an inadequate number of configurations
to represent these molecules, but the limitation to double replacements
mean that these are not even the most important five configurations for
dioxirane or dioxymethane. The ten configurations chosen are even less

adequate near the conversion barrier, where configurations with four open
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shell electrons are important. In the approach used here, (i) the MCSCF
configurations are found in the full reaction space, rather than selected
according to preconceived notions, and (ii) the energy is calculated to
the accuracy of the full reaction space, rather than a small MCSCF
function. Such an approach is clearly more satisfactory.

Karistrom et al. (1979) do include the four most important configu-
rations, given in the preceding section, needed for the ground state
totally symmetric singlet in their ten configuration MCSCF function.
Consequently, their energy results, as seen in Table 5.6, are comparable
to those obtained here. The major difference is that calculation in
the 320 configuration full reaction space used here places dioxymethane
8 rather than barely 2 Kcal/mole above the ring. Karlstrom et al.
(1979) used a double zeta plus polarization basis and, consequently,
obtained a more accurate geometry for dioxirane than the FORS structure
reported here.

Karlstrom et al. (1979) also extend their examination of the
potential surface with their ten configuration MCSCF function up to the
transition state for the dissociation of dioxymethane to C02 and HZ'
None of the configurations used allows for the increased left~right
correlation in the CH bonds as they elongate during this dissociation,
or in the incipient HH bond, as is the case for the 320 configuration
full reaction space used to describe this dissociation in the present
work. However, the smooth transformation from dioxymethane to its dis-

sociation products means that Karlstrom et al. (1979) do catch the
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essence éf the dissociation, which is the change from a two to a
single dominant configuration.

Cimiraglia et al. (1982) have also considered the ring opening to
dioxirane to form dioxymethane, as well as the dissociation of dioxy-
methane to carbon dioxide and hydrogen. This study uses orbitals
obtained from SCF calculations, followed by a multireference Cl calcula-
tion to recover correlation effects. In view of the strong configura-
tion mixing near the conversion barrier, and the the two configuration,
singlet biradical nature of dioxirane, the restriction of the orbital
optimization to an SCF function by Cimiraglia et al. (1982) is inappro-
priate. As seen in Table 5.6, this causes their energies for the bar-
rier to ring opening and for dioxymethane to be too high.

Cimiraglia et al. (1982) perform only a limited geometry variation
during the dissociation of dioxymethane, They linearly interpolate the
geometry between dioxymethane and its dissociation products, assuming
the reaction is complete when CO2 and H2 are four angstroms apart. As
shown here, the dissoéiation is complete when these molecules separate
by 2.4 A. The poor geometries chosen by Cimiraglia et al. (1982) lead
to a very large barrier for the dissociation reaction. The exo-
thermicity between dioxirane and CO2 plus H2 reported by these authors
may well be correct. Both of these structures are wel]-described by
the SCF plus multireference CI wavefunction used by these authors, and

as noted above the FORS calculations here seem to place H2 and CO2 too

high.
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E. Conclusions

The entire least motion C2v potential surface for the H2C02 system
has been investigated. The FORS calculations show that the formation of
dioxirane from singlet methylene and singlet oxygen, as might be
expected, is very exothermic, by 105 Kcal/mole. The barrier to the
insertion of methylene is quite small, 9 Kcal/mole, so that a lower
symmetry attack is likely barrierless.

The ring opening of dioxirane to form dioxymethane is crucial to
the Wadt-Goddard (1975) mechanism for gas phase ozonolysis. The calcu-
lations here reveal the ring opening is slightly endothermic, by 4-8
Kcal/mole, with a barrier only slightly higher, 12 Kcal/mole. This con-
trasts with the isoelectronic system ozone, where the open form lies
28 Kcal/mole below the ring form (Hay and Dunning, 1977). Nonetheless,
the ring opening postulated for dioxirane is certainly feasible. The
vertical excitation energies near the ring opening barrier are reported
for all states within 4 eV of dioxirane.

The final reaction considered is the dissociation of dioxymethane
to molecular hydrogen and carbon dioxide, one of the observed products
of gas phase ozonolysis of ethylene. The barrier to the C2v dissociation
of dioxymethane is 12-31 Kcal/mole, so that the presumably barrierless
hydrogen shift in dioxymethane to formic acid, as suggested by Wadt and
Goddard (1975), is the more likely decomposition route. As expected,
carbon dioxide and hydrogen are much more stable than dioxirane, by
80-93 Kcal/mole. The calculated energetics for this dissociation are

probably less accurate than those for the insertion and ring opening.
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The investigation reported here features more extensive geometry
searching than previous work. Moreover, the configurations are selected
by the FORS model appropriate to the portion of the surface being
investigated. The configurations chosen to treat this system are, thus,
more numerous and less arbitrarily chosen than previous investigations
of parts of this potential surface (Karistrom et al., 1979 and Cimiraglia
et al., 1982). The calculations reported here support the decomposition

mechanism for dioxirane in gas phase ozonolysis suggested by Wadt and

Goddard (1975).
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VI. THE INTRAATOMIC CORRELATION CORRECTION TO THE
FORS MODEL: APPLICATION TO HZ’ NH, AND F2
A. Theoretical Development

Chemists have long thought of molecules as composed of atoms
situated in close proximity to each other. This view was adopted during
the early stages of molecular quantum mechanics, for instance, in valence
bond theory or in the LCAO approach to constructing MOs. As the minimal
basis of Slater functions gave way to the modern practice of using
extended Gaussian bases, contracted in segmented fashion, and as
molecular orbital theory supplanted valence bond theory, the participa-
tion of atoms in a molecular wavefunction has become blurred. As shown
in Chapter 1l, the FORS model restores the concept of the atomic minimal
basis in the framework of extended basis calculations. Appropriate
manipulations of FORS wavefunctions reveal ghe manner in wgich atoms
participate in molecular binding. This atomic analysis of FORS wavefunc-

tions permits an empirical correction to energies calculated by the

FORS model.

1. Synopsis of AIM theory

Moffitt (1951b) recognized that the errors in the first, rather
primitive molecular caléulations, while only one percent or so of the
total energy, were still larger than most important chemical energy
differences such as bond energies and excitation energies. Moffitt
real ized that it was nearly impossible to improve the computations of

that period to remove these errors, and so proposed an empirical
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correction scheme, known as the Atoms in Molecules (AIM) method. The
scheme involves partitioning the molecular Hamiltonian into interatomic
and intraa;omic terms. The intraatomic terms are much larger, and are
known from spectroscopic data to greater accuracy than they can be
calculated. The interatomic terms are calculated for the molecule of
interest, and because they are smaller than the intraatomic terms, are
presumably calculated to greater accuracy. Moffitt (1951a) was able to
apply this synthesis of experimental and calculational data to obtain
potential curves of improved accuracy for several valence states of
molecular oxygen. Further exploration of the concept of atomic valence
states in molecules is given by Moffitt (1954).

The AIM method will be sketched for diatomic molecules AB. The
molecular wavefunction is built from valence bond structures for the
diatom, such as AB, A*B, AB*, A+B-, A-B+, etc. To avoid repetition,
the ground and excited states of the neutral atoms, ions, or multiply
charged ions, will be collectively referred to as atomic states. A
convenient notation for a given valence bond structure, termed a compos-

ite function (CF) by Moffitt (1951b) is

|a;8,> = f§|Ai>|Bj> , (6.1)

where K is the coset antisymmetrizer that produces a totally antisym-
metric function from the product of antisymmetric atomic functions lAi>
and IBj>' 0f course, for a neutral molecule, the atomic states must
have equal but opposite charges. A minimal basis is used to form the

various atomic states. As the orbitals on each atom are nonorthogonal,
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the calculation of such a valence bond function invoives the difficult

computation of Hamiltonian and overlap integrals between the CFs:

H

ke = <NBjlHlasB>
(6.2)

Si5,ke <AiBj|AkBl>

The difficulty of calculating such matrix elements in a nonorthogonal
basis has caused the virtual abandonment of the valence bond theory in
favor of molecular orbital theory. However, the clear identity of
atomic states in valence bond wavefunctions facilitates the use of the
AIM correction method.

The derivation of the AIM correction procedure is based on parti-

tioning the molecular Hamiltonian into intra- and interatomic terms
Ho= WY+ WB v (6.3)

The intraatomic term for atom A is

N

1
P (6.4)

A A A

A 1 2 A 1
S R AT WS )
i i i iJ

Ai

e
-

where the sums run only over the electrons possessed by atom A (this
. . B .
number changes if in a particular CF the "atom' is an ion) and H s

defined similarly. The interatomic interaction operator is

1 1
F—-' T . (6.5)

B Z AA A
_JL_ ] _ji_ + ]
? R i R i ij AB

e~ 0

The Hamiltonian matrix element between two CFs composed of exact atomic

eigenfunctions is
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B A, B . AB
His ke <AiBj|H + H + V(A B>
(6.6)
(A, B AB
= (B +ESi 1 + Vi ke
The Hermitian conjugate element is
_ A, B,  AB
oo 1) = <A B [HT + H + v |AiBj>
(6.7)
A, B AB
= P+ EDS it Vg i

These expressions are equal, as the total Hamiltonian is self-adjoint.
The metric S is also Hermitian, while the interaction operator itself
is not. Equations (6.6) and (6.7) are derived without approximation
for exact atomic eigenfunctions.

The essence of the atoms in molecules method is that the interatomic
term VAB and the overlaps S can be calculated much more accurately than
the much larger atomic energies E. Approximating the atomic states by
expanding in some appropriate basis, and denoting quantities calculated

in this basis by a tilde, the two matrix elements above are approximately

given by
N AL ByI “AB
Hiske = B v ESie * Vi ke
(6.8)
n A L By ~AB
Heo i = (B EDSH g * Vi 1

These are no longer equal, due to the approximate nature of the atomic

state functions, and a Hermitian matrix is obtained by averaging these

conjugate elements,
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H Y

1,.A B A B\« 1 ~AB ~AB
ike = 2 FEPHF B FEDS gt ke F Vi) - (629)
Calculation of the matrix elements of the interaction operator VAB defined
in Eq. (6.5) is exceedingly difficult. Following Moffitt's (1951b)
second alternative, these elements are obtained approximately by calcu-

lating all quantities in Eq. (6.6) in the basis representation,

“AB PR . (A _ EByg
Vigke ¥ Mgk T BT ESi ke o (6.10)
. ~AB . . . .
and similarly for Vis i Substituting into (6.9) gives
N 1 A ~A B nt A ~A B =B
Hij,kz = Hij,kz + 5 {(Ei Ei) + (Ej Ej) + (Ek Ek) + (Ez Ez)}
X Sij,kz . (6.11)

This is the Atoms in Molecules (AIM) Hamiltonian and is trivially calcu-
lated provided that the usual ﬁ and g matrix elements needed for a con-
ventional calculation in the CF basis are known. The second term in

the AIM Hami ltonian represents the corrections for the errors involved
in calculating the large intraatomic energies. The partitioning of the
Hamiltonian in Eq. (6.3) is purely formal, to facilitate the development
of the approximation (6.11). It is not necessary to calculate matrix

elements of the interaction operator VAB, as Moffitt (1951b) suggests

as his first alternative.

2. Types of atomic correction terms

The essence of any AIM method, and the differences between them,
are the type corrections used in applying (6.11). 1In Moffitt's (1951a)

original application, AIM calculations on oxygen are performed in a
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minimal basis of Slater orbitals, with screening constants selected by
Slater's rule. The difference between the exact energy E of an atomic
state, and the SCF energy calculated in such a basis, can be attributed
to several causes:
i) failure to optimize the screening parameter to achieve the
lowest possible atomic energy,
ii) failure to expand the atomic minimal basis set in terms of
several Slater, or Gaussian functions, i.e., to use 'Hartree-
Fock' AOs,

iii) additional errors in the excited states or fons due to using
screening constants, or contractions appropriate to the neutral
atom ground state,

iv) atomic correlation effects discussed further below, and

v) omission of relativistic effects from the Hamiltonian.
An additional source of error in molecular calculations is the failure
to use an extended basis set in the molecular calculation, that is a
more flexible contraction than the minimal basis, as well as polarization
functions.

In the sequel, a variant of the AIM method will be applied to F2.
To illustrate the sizes of the correction terms listed above, consider
the 2P ground state of the fluorine atom. The energy of F in a minimal
basis, with exponent chosen by Slater%s rules, is -98.9317 h. Optimiza-
tion of the exponent lowers this by 0.0104 h. More dramatic lowering is
produced by increasing the basis to the atomic limit; this lowers the

energy by 0.5328 h.  Atomic correlation for F lowers the energy by
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0.328 h, and relativistic terms produce a lowering by 0.0805 h. The cor-
rections sum to 0.9517 h, and represent 0.95% of the total energy of F,
-99.8834 h. To put the size of these corrections in perspective, the
bond strength of F2 is just 0.061 h. The third type of error above
depends on the particular state considered. The error in using near
Hartree-Fock F atom ground state orbitals (14s,7p/2s,1p) for the 24
excited state of F is 0.0190 h, for 1S F, 0.1518 h, and for 3P F+,
0.1075 h.

All AIM calculations to date have been performed with minimal
primitive sets, or minimal contractions, rather than extended bases.
The reason for this is that the MBS, containing just one function per AO,
permits ready identification of orbital occupancies and, hence, atomic
states in the molecular wavefunction. An ssz occupation is easily

distinguished from a s1pN+l

configuration, etc. The final type of
error mentioned above, namely using a minimal contraction of Hartree-
Fock quality versus an extended basis for FZ’ divided by two for com-
parison to the atomic terms, is 0.019 h. This error can be substantially
larger for other first row diatomics, and unlike the other errors is
purely molecular. The extended basis contributes directly to g in
Eq. (6.11), rather than affecting the correction term in that equation.
No previous AIM calculations have been able to account for this type of
basis truncation error.

If the five purely atomic terms are applied in Eq. (6.11), the cor-

rect positions of all valence molecular eigenstates are obtained in the

limit of infinite separation of the atoms. In this limit, the overlap
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matrix becomes a unit matrix, and the correction terms by construction,
adjust the Hamiltonian ﬁ so as to asymptotically yield the correct state
energies. |t is to be hoped that at finite bond lengths, the potential
curves given by the corrected Hamiltonian have the correct shapes and
remain correctly spaced with respect to each other. The success of the
AIM method must be measured by the extent to which this is true.
Further clarification of the role of atomic correlation in the AIM
method is needed. The composite functions are usually chosen here, and
for the most part in other AIM applications, as products of single con-
figuration atomic valence states. Direct computational recovery of the
correlation error, say for the F atom, would involve excitation into the
3s, 3p, 3d, etc. higher atomic orbitals. This atomic correlation is,
therefore, entirely ''dynamical'' in nature, in that its recovery in a Cl
calculation would require excitations into the external orbital space.
This atomic correlation is not the only type present in the molecule,
however. In keeping with the spirit of the FORS model in the present
work, all possible CFs with the appropriate overall symmetry which can
be formed by taking products of all atomic (including ionic) valence
states will be chosen as the base function to which the AIM correction
will be applied. In much of the previous AIM work, only the more
important CFs were used. The CFs used here differ only in the way the
valence, or internal orbitals, are occupied, and so the molecular cor-
relation energy recovered by the uncorrected function is of the ''near
degeneracy'' type. In light of this, Eq (6.11) can be interpreted in

the following way: the base function itself recovers all the ''near
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degeneracy'' correlation through the uncorrected Hamiltonian, and the
correction term recovers the ''dynamical' molecular correlation, which is
interpreted in the AIM scheme as purely atomic in nature.

Two points in the preceding paragraph deserve further discussion.
The uncorrected wavefunction is defined above to consist of all possible
CFs formed from all atomic states. |In fact, if the atomic basis in
which this calculation is performed is sufficiently flexible, and the
AOs used to construct the CFs are optimized in that basis, this defini-
tion is equivalent to the FORS wavefunction defined from the molecular
orbital viewpoint in Chapter Il. A minor point involves the atomic
states whose products are the CFs. |In most instances, these atomic
states are of the SCF type, that is, they consist of a single configura-
tion. In a few instances, a multiconfiguration function must be used,
e.g., when the two configurations ssz and sopN+2, (n < 4) happen to
possess the same state symmetry. This choice is consistent with the
above discussion. The atomic multiconfiguration function recovers the
""!near degeneracy'' correlation of the atom, and the remaining correlation
error is ''dynamical'' in nature and is treated as a correction.

The types of atomic correction energies given above fall into two
general categories: basis set errors, and correlation or relativistic
effects. With the aid of the new digital computers, the focus of
quantum chemistry from the late 1950s onward was on the elimination of
these basis and correlation errors. With modern computers and programs,
basis errors can be reduced practically to zero for diatomics and are

quite small even for moderately sized molecules. Recovery of the
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correlation error has proved the more difficult problem, with most MCSCF
or Cl procedures aimed primarily at the recovery of valence shell cor-
relation errors. The FORS calculations on diatomic molecules presented
at the end of Chapter Il serve as a perfect example of these decades of
computational improvement: the MCSCF procedure recovers all ''near
degeneracy' type correlation, and the estimated basis truncation errors
are smaller than the errors in the calculated bond energies. Unfortu-
nately, these bond energy errors are several times larger than chemical
accuracy, and so one must look primarily to the atomic correlation, and
possibly to the neglect of relativistic terms in the Hamiltonian to

obtain more accurate bond energies.

3. The ICC modification of AIM theory

Shortly after Moffitt's original AIM proposal, a number of workers
were attracted to the coﬁcept by its promise of greatly improved
accuracy for little computational effort. Only one of the resulting AIM
variants will be discussed here. Review articles, with reference to
other work, have been given by Arai (1960), Hurley (1963), and Balint-
Kurti and Karplus (1974). The development of the AIM approximation in
Eq. (6.11), and the notation used here, follows closely the review by
Balint-Kurti and Karplus (1974), who obtain (6.11) with more rigorous
attention to the commutation properties of the interaction operator and
the antisymmetrizer, and with more discussion of the approximations
involved in its development. Verhaegen and co-workers have developed a
correlation correction scheme based on Mulliken population analyses of

MBS SCF functions that can distinguish only the weights of atomic
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configurations (not individual atomic states) in the wavefunction. This
scheme is similar in spirit to AIM methods but is quite.different inits
application, and is most recently described by Lieven, Breulet and
Verhaegen (1981).

Application of Moffitt's original AIM proposal was shown by several
workers to yield binding energies larger than experiment, that is, the
original underestimates of these bond ehergies were being overcorrected
by the AIM correction. Hurley (1956) attributed these overcorrections
to the large corrections applied to those CFs formed from ions or
excited states built from orbitals with exponents chosen for the ground
state atoms. In the most successful modification of AIM theory to date,
Hurley (1956) proposed the Intraatomic Correlation Correction (ICC)
scheme. The ICC correction is obtained from atomic or ionic calculations
in which the exponents are reoptimized for each such state, that is,
corrections of type iii above are ignored. The resulting correlation
correction for such a state is applied unchanged in the molecule, even
though all CFs are constructed using the same screening parameters. An
interesting and highly useful consequence of the ICC correction is that
the screening parameters can be taken as those giving the lowest
molecular energy rather than those best for the ground state neutral
atoms, since the ICC correction is assumed independent of the screening
constants used in the molecular calculation. As most of Hurley's work
was performed with minimal Slater bases, these excited states and ions
as well as the neutral atoms still possess a large correction due to

failure to expand these states in a larger primitive set, the type ii



196

error given above. In later work, Hurley (1963) uses Hartree-Fock AOs
rescaled for the molecule to construct CFs, thereby substantially
reducing these type ii contributions to the ICC corrections.

The assumption that the correlation correction is independent of
the screening parameters (or the scaling of a contraction) at first
glance seems quite arbitrary. However, a number of workers have shown
that correlation effects are surprisingly independent of orbital size
and shape. Hurley (1956) gives this physical motivation for the
assumption: the correlation energies of H™, He, and Li* (including
also the MBS truncation error) are 1.49, 1.51, and 1.54, respectively,
although the Slater MBS SCF functions for these three species have
qui te different screening constants. The pure correlation errors for
two electron atoms are likewise almost constant, changing from 1.08 eV

for H™, 1.14 eV for He, 1.18 eV for Li*, to 1.24 eV for Ne'S.

Miller
and Ruedenberg (1968) have shown the 1s inner shell correlation for the
four electron atoms is 1.12 eV for Li—, 1.07 eV for Be, and 1.00 eV for
Ne+6. As another example, take the isoelectronic series of nine elec-
tron atoms: the total correlation energy of F is 8.82 eV; Ne+, 8.92 eV;
and Na+2, 9.14 eV (Verhaegen and Moser, 1970). The correlation error

is remarkably constant for this sequence, especially in view of the fact
that the SCF orbitals deform (shrink) more in proceeding from F to Na+2
than they do in going from F to excited F, F+, or F . It, thus, seems
physically justified to take the correlation energies as independent of

orbital sizes. Of course, correlation energies do vary with the number
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of electrons occupying these orbitals, or the manner in which these
electrons are coupled.

One drawback of the ICC procedure is that unlike the AIM scheme, it
does not correctly predict the positions oflall valence states of a
diatom in the limit of large bond lengths. The neglect of the type iii
correction term improves the shape of the potential curve for which the
screening parameters and atomic contractions were adjusted, at the
expense of the correct asymptotic behavior for the other states. The
curves for other states must be obtained by separate ICC calculations on
each desired state, rather than obtaining all states from the same

secular equation, as in the original AIM formalism.

L, The FORS-1ACC procedure

As shown in Chapter ||, the FORS bond energies for diatomic mole-
cules possess an error rather larger than chemical accuracy. The Atoms
in Molecules concept with a correction scheme similar to the ICC scheme
can be applied to the FORS wavefunction to remove a goodly portion of
this error. The correction scheme used here is termed the IntraAtomic
Correlation Correction (IACC) to show its commonality with the ICC
approach, but differs from it in two important fashions.

The major innovation in the FORS-IACC scheme is that the CFs are
constructed from orthonormal '"atomic'' orbitals. As shown in Chapter |11,
the MOs of a FORS wavefunction may be localized according to a projec-
tion procedure in such a fashion that the localized orbitals closely
resemble unhybridized atomic orbitals. When constructing CFs, the

localized MO most closely resembling a particular A0 is used in that AO's
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stead. Examination of the projected localized MOs in Figs. 3.1, 3.3,
and 3.6 shows the extent to which this replacement is justified. (Note
that, in general, the projected MOs used as the three p, or five d, etc.
orbitals are not spatially equivalent.) The use of these projected
localized MOs in the CFs permits a great simplification of the AIM
approximation. Since the orbitals are orthonormal, the CFs are also

orthonormal at all bond distances. Equation (6.11) simplifies to

e

- A ~ B ~
H H + {(Ei - Ei) + (Ej - Ej)}sij,kz' (6.12)

ij,ke = "ij,ke

The computation of ﬁ is also considerably simplified by orbital ortho-
normality. The correction term may be viewed as a perturbation which
is diagonal in the CF representation.

A second important feature of the FORS~|IACC procedure is that the
uncorrected Hamiltonian is computed using an extended, flexibly con-
tracted atomic basis set. The minimal basis orbitals to which electrons
are assigned in forming CFs are found by localization of the FORS MOs,
after these have been optimally determined in the QBO basis. The three
types of atomic basis errors and the purely molecular error of inflexible
contraction described in Section VI.A.2 are minimized by taking thé
molecule optimized PLOs as the atomic minimal basis set for the con-
struction of CFs. Because the FORS calculations, at least for diatomic
molecules, are performed in large QB0 sets, the errors due to finite
basis expansion are small and need not be accounted for in the correc-
tion term in Eq. (6.12). Therefore, the IACC correction term used in

applying (6.12) consists only of correlation and relativistic corrections.
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The correlation correction used in the |ACC scheme is a generaliza-
tion of the ICC correction, for which correlation errors are assumed
independent of orbital scaling. Here the orbitals are determined by
molecular optimization in a flexible basis and, hence, are deformed from
the neutral free atom SCF AOs in a more complicated fashion than just
rescaling. However, the PLOs were shown in Chapter |l to be quite
similar to the free atom SCF AOs, with overlaps usually in excess of
0.9. Therefore, the IACC correlation and relativistic correction for
an atomic state built from PLOs are assumea to be equal to that of the
same state formed from its optimal free atom AOs.

Given the Hamiltonian matrix in the CF representation, application
of the IACC correction requires only knowledge of the correlation and
relativistic energy'corrections to the various atomic states occurring
in the CFs. Happily, there is much more information of this type
available now than in the early days of AIM theory. There are two key
compilations of these data for the three to ten electron atoms (Li to
Ne), and for many isoelectronic positive fons as well. Correlation
energies, in some cases corrected for the 2s-2p near degeneracy, for all
states arising from the 2522pN configurations, are given by Verhaegen
and Moser (1970). Correlation energies for all 2512pN and ZSOZpN
states, and relativistic corrections for all three types of configura-
tions are given by Desclaux, Moser and Verhaegen (1971). For higher
elements, less data are available, Clementi (1965) has given correla-

tion corrections for the ground states of the first 22 elements, and

some of their positive ions. Fraga et al, (1976) give relativistic
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.cofrections to Hartree-Fock energies for the ground states of the first
102 elements and many of their positive ions

The availability of correlation and relativistic corrections for
negative ions is considerably less, owing largely to the difficulty in
obtaining experimental data for these species. Generally only the
singly negative ion, at most, will be stable. Electron affiﬁities are
difficult to measure accurately, and are normally only available for the
ground states of the ions. Hotop and Lineberger (1975) have given
experimental electron affinities for the first 85 elements of the
periodic table, including a very few negative atom excited states.
Schaefer et al. (1969) have given less accurate theoretically derived
electron affinities for the atoms B to F, ihcluding a number of the low-
lying excited negative ion states. Correlation and relativistic correc-
tions can be extracted from these electron affinities, with the help of
judicious extrapolation of the known corrections for the neutral and
positive ions., Clementi and Roetti (1974) give SCF energies for singly
negative ions from Li to | .

Only singly negative ions occur in the diatomic molecules con-
sidered in the present case. However, highly negative ions can occur,
€.g., C-40+h CFs would be found included in the CO wavefunction. For
doubly negative ions, there are virtually no experimental data (Hotop
and Lineberger, 1975), and extrapolation to these or even more negative
ions from the positive and neutral species is dubious. It is recommended

that the correction applied to any such CF for which accurate values



201

are unknown be taken as equal to the correction applied to the CF formed
with neutral atoms in their ground states.

As a result of the resolution of the errors of atomic Hartree-Fock
energies into correlation and relativistic contributions by Desclaux,
Moser and Verhaegen (1971), it is possible to attribute the molecular
errors to either correlation or relativistic contributions. While
theoretical chemists usually believe relativistic effects to be much
more constant than correlation energies, relativistic corrections to
atomic energies are hardly negligible. Recently, Feller and Davidson
(1980) have suggested the discrepancy between experimental and large
scale Cl determinations of the singlet-triplet separation in methylene
is due to relativistic contributions to the carbon atom, said to be in

3

the szp2 or sp” valence state, respectively. The |ACC scheme permits

the relative importance of correlation versus relativistic errors in

molecular calculations to be estimated.
B. Applications

1. Implementing the I|ACC correction

To apply the IACC correction embodied in Eq. (6.12) to a FORS
wavefunction, the Hamiltonian matrix elements between CFs formed from
PLOs are needed. Although these matrix elements could be evaluated
directly, two difficulties arise. The specification of just which CFs
occur in the full valence space is not as simple as specifying which
SAAPs occur in the FRS. Furthermore, while existing ALIS programs can

readily evaluate Hamiltonian matrix elements between SAAPs, this is not
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the case for the calculation of these matrix elements for CFs. While
both these problems are soluble, in the present case existing programs
are used to do as much computation as possible in a SAAP basis before
transforming to a CF representation.

As alfeady discussed, the full set of CFs constructed from all
atomic valence states is equivalent to the full valence space of SAAPs
described in Chapter |l. These two bases are related by an orthogonal

transformation,

{CFs} = {SAAPs}T . (6.13)

The full valence space in the SAAP basis is readily generated (Lam,
1982), as is the Hamiltonian in this SAAP basis. The Hamiltonian in

the CF basis is obtained by similarity transformation,

HCF - T+ HSAAP T ) ' (6.14)

The transformation T in Eq. (6.13) is a sparse matrix, and its elements
are simply defined numbers. T is independent of the molecular geometry,
and its computation is illustrated by an example below. The algebraic
manipulations needed to obtain this transformation are the only diffi-
cult step in applying the IACC procedure. A program to caﬁry out this
transformation, and to diagonalize the CF Hamiltonian before and after
applYing the IACC correction has been written. This program also calcu-
lates the correction to the molecular energy via first order perturbation
theory.

In transforming SAAPs built from PLOs to CFs constructed from the

same PLOs, it is necessary to know how the PLOs are occupied in the
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various atomic states. The atomic states must be expressed in terms of
real rather than complex atomic orbitals, as the PLOs are of course real.
All valence states arising from the pN configurations, 1 <N <6, have
been found for real atomic p orbitals. These states, and the method by
which they were obta{ned, are given in the Appendix to this chapter.

A difficulty faced in cbtaining the transformation to the CF basis
is that the various CFs occurring in the full valence space are unknown.

The quod erat inveniendum process by which the transformation to the

unknown CFs is found yields also the CFs themselves. Each SAAP is fac-
tored to a product of atomic space-spin products, and these atomic
products are compared to the atomic states given in the tables in the
appendix. This comparison reveals which atomic states, or linear com-
binations of atomic states, occur in each SAAP.

An alternate method for the computation of T is to diagonalize the
Hamiltonian matrix between SAAPs constructed from the free atoms' MBS
AOs with all atoms separated by large distances (=10 ﬁ). Each eigen-
vector is a pure CF, except in cases where several atomic states of the
same symmetry exist, in which case this is the desired atomic near
degeneracy mixing.

In the next three sections, the IACC correction is applied to HZ’

NH, and F For simplicity, the total antisymmetrizer A is assumed to

9
incorporate the usual normalizing factors of 1/v/2 for each doubly
occupied orbital occurring in a SAAP. The coset antisymmetrizer A also

includes the various VN! factors that occur in its usual definition.

Three other operators will be used in the following to simplify the
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notation:
S = {1 = interchange of S, = 1/2 and $, = -1/2}/V2
L = {1 - replacement of L; = +lwithlL, = -1}/V2 (6.15)
X = {1 + exchange of left and right atom}/vVZ

|25*1L(L_,s.)>, which
Zz 2z

The notation used to label each atomic state is
may include a superscript on the ket to indicate its charge. Lz is
not a good quantum number, as described in the Appendix. The correla-

tion correction depends only on § and L, of course, so the operators in

Eq. (6.15) group only terms which receive identical corrections.

2. M
H2 is the simplest possible example of the IACC correction proce-
dure. For the ground 1Z+ state of hydrogen, the FORS wavefunction con-
sists of the two configurations,los and 1cﬁ, which correctly dissociates
Hy, to 2H. Calculations at R = 1.4 bohr using an unscaled (10s,3p,1d/
5s,3p,1d) basis, with molecule optimized polarization exponents of
cp = 0.3, 1.2, 5.4 and Ly = 1.96, give SCF and FORS energies of
-1.1335808 h and =1.1521191 h, respectively. These correspond to bond
strengths of 3.64 eV and 4.14 eV, respectively, compared to the experi-
mental 4.75 eV (Huber and Herzberg, 1979), so that the FORS wavefunction
recovers just 45% of the molecular correlation. The QBO set used here

is essentially complete for SCF or FORS type calculations, with a 5 ph

error in the atomic H energy, and a 15 ph error in the molecular SCF

energy.
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Following projected localization of £h€ FORS orbitals, two s shaped
orthonormal orbitals are obtained, one on each atom and designated A
and B. One of these orbitals is shown in Fig. 6.1. |t has an overlap
of only 0.899 with the 1s orbital of a free H atom, due more to shrinkage
of the orbital than its orthogonalizing tail on the other atom. Three

singlet SAAPs can be formed from these PLOs, namely,

A{ABeoo} , A{AAGOO} , A{Bseoo} » 8gg = (0B - Ba)/V2

Two linear combinations of these adapted to 12; symmetry can be formed,

|covalent> = A{ABSOO}

|ionic> = 1/v2 A{ARD G} + 1/VZ A{BBE )

The ionic minus linear combination is the 12: configuration lcélol, and
does not contribute to the ground state. Recomputation of the FORS
function using the PLOs gives the coefficients of the covalent and ionic
terms in the uncorrected FORS function as 0.780814 and 0.624763,
respectively.

The covalent-ionic representation of the FORS function for H2 is
the same form as the usual valence bond function composed of nonorthog-
onal AOs. It differs in that the 'atomic' orbitals A and B are ortho-
normal .PLOs in the present case. As a result, the coefficient of the
jonic term is considerably larger than in a conventional valence bond
function. However, the FORS function is exactly equivalent to a GVB
calculation in the same basis. Proof of this, and further discussion of

the relationship between the MO and VB type functions for H2’ is given

by Hurley (1976).
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Figure 6.1.

One of the equivalent projected localized orbitals for Hjp.

Electron occupancy = 1, bond order to other atom

0.9756
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The possible atomic states for a proton having 0, 1, or 2 electrons

are
W = |proton>”
, 2
H = |“s(0,1/2)> = 1sa
2
H = |°s(0,-1/2)> = 1sB
W o= 1's00,00>7 = 152(a8 - Ba)/VE

One of the basis IACC postulates is to identify the molecular orbitals
A and B with the atomic orbital 1s. Expanding the spin function of the

covalent SAAP gives

lcovalent> = -=A{(Aa)(B8)} - —— A{(AB) (Ba)}
/7 /7

Substituting the atomic state functions into the covalent and ionic

terms gives

|covalent> = lF/i{|25(0,1/2)>|2s(o,-1/2)>-|25(o,-1/2)>|zs(o,1/2)>}
2

lionic> = :%: {|15(0,0)>-|proton>+ + |proton>+[15(0,0)>-}
2

Use of the interchange operators defined in Section VI.B.1 simplifies

the notation to
|covalent> = As|%s(0,1/2)>|%s(0,-1/2)>

|ionic> = X|1S(0,O)>-|proton>+
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The transformation from the covalent and ionic SAAPs to the symmetry
adapted CFs is thus a unit matrix. The CFs present in the molecular
wavefunction are the neutral HH and the ionic H-H+, all in their ground
states. The neutral and ionic CFs in the uncorrected FORS wavefunction
have the same coefficients as the covalent and ionic SAAPs.

The IACC correction is quite simple for Hz. A bare proton and a
hydrogen atom have no correlation energy. Relativistic corrections to
the H and H~ energy are negligible on the chemical energy scale. Thus,
only the correlation correction for H is required. The SCF energy of
the hydride ion is -0.487927 h (Froese Fischer, 1977) and the exact
energy is -0.527751 h (Pekeris, 1958). The hydride correlation correc-
tion is, therefore, -39.8 mh. The second basic assumption of the IACC
scheme is that this correlation correction for H transfers unchanged
into the hydrogen molecule. Denoting the sum of the corrections to the
CFs as 8, and treating the IACC correction term in (6.12) as a perturba-

tion, the total IACC correction is

2 2 b5y

8E = Cpy Suy *+ Cymyt Sy

= (0.780814)2(0 + 0) + (0.624763)2(~0.039824 + 0)
= =0.01554 h
-0.42 eV

EIACC

gFORS L Ak = -1.16766 h.

corresponding to De = 4,56 eV. This is substantially closer to the

L.75 eV experimental result than is the uncorrected FORS value of
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L.14 eV. Correcting the Hamiltonian according to Eq. (6.12) and
diagonalizing it gives an IACC correction of -0.43 eV, which is scarcely
different from the perturbation treatment. The perturbation result is
more enlightening about the nature of th |ACC correction than is the
diagonalization, which is not a variational treatment due to approxi-
mating the Hamiltonian. The perturbative treatment shows the IACC cor-
rection to be entirely due to the inclusion of dynamical correlation in

the hydride component of the H2 wavefunction.

3. NH

The IACC correction to the two lowest states of the imidogen

32_ and a]A states,

radical, NH, will be illustrated. These are the X
arising from the n2 configuration. Energy results from SCF and FORS
calculations on the triplet were discussed in Chapter ||, and the PLOs

for this state are shown in Fig. 3.1. The nine SAAPs in the FORS wave-

function constructed from these PLOs are

1]

¢1 A{szzhxy e]}

_ 2
o, = A{s“zhxy 63}

= A{z%sh }
¢3 = A{z"shxy e1

= A{z%shxy 8.}
¢[+ - Z shxy 3

05 = Als’hxy 8))

¢ = A{hzszxy 63}
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¢7 = A{hzszxy 91}
0g = A{zzhzxy 61}
¢9 = A{szzzxy 61} )

where the 152 core is understood; s, x, ¥, and z designate the nitrogen

PLOs; h is the hydrogen PLOs; and the triplet Serber spin functions are
1 = %00%0%1

8 = 850(010811 = 848,0)/V2

The geminal spin functions are given as footnotes to Table 6.3. The
first four SAAPs correspond to NH, the next four to N+H-, and the last
to NH'.

Because the analysis of the SAAPs in terms of CFs is easiest if
the two atoms have an even number of electrons, consider first one of

the NTH™ sAAPs.

¢5 = A{szhzxy 900900911}

2

« h"8,41

A{szxy )

00%11 00

]

v 2 2
A[Ah{s Xy 60061]} . Az{h 900}]

Recourse to the Appendix of this chapter shows this factorization gives

a 3P state of N+, and a singlet hydride ion,

b5 = A13r(0,1)s2p5%|s(0,0)>"
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Here the N state is always written first in the CFs. The analysis of
¢8 and ¢9 is similar.

The ifonic SAAPs ¢6 and ¢7 are more difficult to analyze, because

they contain a single s electron. For example,

2
bg A{h“szxy 900(011910 - eloe11)//5}

]

P’ 2
A[Al‘{szxy(e”e]0 - 610611)//7} . Az{h 800}]

K[Ah{xyzs(el1e1o = 010809)/V2) - Az{h2 Y.

The coupling of an.s electron to a pN configuration is treated in the
Appendix to this chapter. The nitrogen ion in ¢6 is present in a mixture
of states,

-3 . 3 +
1 2 1 -
b6 = M| sms> - /%" v, 115 00,00

The covalent type SAAPs require careful analysis, because one of
the geminal spin functions must be decomposed in separating the nitrogen

electron from the hydrogen. As an example, consider

}

2
¢ A{s"zhxy 800%00%11

AlsZxyzh }

00%11%00

R[AS{szxyz 6006]1a}{h6} - As{szxyz 6009006}{ha}]//5

]

The p portion of the spin function for nitrogen in the first term is the
high spin Serber function 63/2 3/2 for three unpaired electrons.

However, in the second term, the spin dependence is not a single Serber
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function. In fact,

_ o .3/21/2 _ /2 1/21/2
I //3 8

as can be shown in the same manner. the 911 states are related to Serber

functions in the Appendix. ¢1 becomes

3/2 3/2y (10} + 63/2 /2y

el 2 ] 2
b, = A[—A_{s"xyz 08,.60 — A {s"xyz ©
1 /7 5 00 5 00

- —L-As{szxyz ) 61/2 ‘/2}{ha}]

/g 00

Use of Table 6.10 permits expression in terms of CFs,

b, = Al- —-‘ 5(0,3/2)s 3>‘ 0,-1/2)>

2
+

y
] $(0,1/2)s p3>} 0,1/2)> $(0,1/2)%3| s(0,1/2)1.

1 1
3 /§
The two hS- 25 products differ only in the Sz values and are treated

together, with the same IACC correction.

After similar analysis of all nine SAAPs in the ground state con-

figuration, the following nine CFs are found present:

K15 (0,%)s%%| %5 (0,%)>

<
i}

b, = AI%(0,1/2)s%%|%s(0,1/2)>
by = K|L’p(o,z-c)s’p">|25(o,=~=)>

b, = AI%0,1/2)s'%|%s(0,1/2)>
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by = A13p(0,1)s%5%|75(0,0)>"
v = AlI’0(0,1)s'p>*|1s(0,0)>"
- Al13s0,1)s e 1s(0,0)>"
bg = AlI%P(0,1)s%>"|"s(0,0)>7
by = Al13p(0,1)s2" |proton>t

Here the * notation accomplishes much the same purpose as the spin

projection exchange operator given in Eq. (6.15) did in the H2 example:

A%s(0,%)>]2s(0,%)> . Al*s(0,1/2)>|%s(0,1/2)>

- Z 400,320 %5 (0,-1/2)>

5(0,%)> %A|“P(o,1/2)>|zs(o,1/2)>

Al7P(0,*)>|

) ’é‘?AI“P(o,s/z)>lzs(o,l/2)>

The transformation from the SAAP to CF basis is given in Table 6.1.
Two of the CFs, w5 and w8,contain 3P states, which can interact to
form two configuration atomic states, from which the 2s-2p near

degeneracy correlation is removed,

(s ¥g) = G5 vg) (§ o)

The coefficients a and b are fixed by a calculation on the lower 3P

atomic state of N+, a = 0.989949 and b = -0.141422, Application of this

2 x 2 transformation following the transformation in Table 6.1 gives the
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Table 6.1. Transformation from SAAPs to CFs for X3Z- NHa

SAA;\\Ei T P A A A

v2/3 V1/3

¢, -Y1/3 v¥2/3
b v2/3 V1/3
-/1/3 v2/3

-/2/3 /173
; /173 V273

~

aw and yg are subjected to a further transformation to
obtain the final CFs. See text for discussion.
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combined transformation from the SAAP basis to the CF basis in which the
IACC correction is applied.

Transforming the Hamiltonian in the SAAP basis to the CF basis as
in Eq. (6.14), applying the appropriate corrections to the diagonal
elements, and diagonalizing gives an IACC correction for triplet NH of
-0.2476 h. First order perturbation theory gives a scarcely different
correction of =0.2466 h, which is the value of the IACC correction used
below. The correction at infinite separation is the |hS>|25> correction,
namely -0.2148 h. The IACC correction increases the calculated bond
strength to 3.65 eV, quite close to the experimental 3.85 eV.

The details of the perturbation correction for triplet NH are shown
in Table 6.2. This table gives the coefficients for each CF in the
uncorrected wavefunction. Although the largest term is the product of
N and H in their ground states, there are substantial admixtures of
other CFs, particularly the N"HY CF. This CF is followed in importance
by various N*H CFs, and the N+H- CFs are the least important. All but
one of the CFs has a larger total correction than the |hS>|ZS> CF, so
that the correction to NH is greater than that for N + H. Because of
this, the |ACC bond strength is greater than the FORS bond energy.

The first excited state of NH is the a]A state, arising from the
same "2 configuration as the ground state. The 1A state dissociates to
the first excited state of N, 2D, and a ground state H atom. Calcula-
tion at R = 2.0 bohr with the same basis as used for the ground state
gives an SCF energy of =-54.908654 h and a FORS energy of -54.930066 h.

The SCF energy of 2D N in the basis used here is -54.295505 h. The SCF
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Table 6.2. IACC perturbation correction to X°X NH

Nitrogena Hydrogenb Total Weightedc

CF Coefficient Correlation Relativity Correlation Correction Correction
|"s>]2s> 0.566690 -0.188¢ -0.0268 - -0.2148 -0.0690
|20>|25> 0.346512 -0.206¢ -0.0268 -—- -0.2328 -0.0280
|“P>|zs> 0.334704 -0.202 -0.0242 - -0.2262 -0.0253
12p>| 25> 0.161077 -0.293 -0.0242 --- -0.3172 -0.0082
1Pps2p>* 1> 0.215703 -0. 1459 -0.0270 -0.0398 -0.2118 -0.0099
3> ts> -0.164031 -0.164 -0.0238 -0.0398 -0.2276 -0.0061
13>t 1s™>" -0.194511 -0.200 -0.0238 -0.0398 -0.2636 -0.0100
BpsfpF s> 0.120096 -0.213 -0.0246 -0.0398 -0.2774 -0.0040
135> |protor>™ 0.543257 - -0.265F -0.0266 —-- -0.2916 -0.0861

-0.2466 h

3Corrections from Desclaux, Moser and Verhaegen (1971), except as noted.
bSee discussion for H Section VI.B.2.

2’

“Total correction for the CF, times its coefficient squared.



dVerhaegen and Moser (1970).
®The notation indicates which configuration dominates the two configuration Nt state.

From the electron affinity given by Hotop and Lineberger (1975), and data in references
a and d.

L1Z
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and FORS bond strengths are 3.08 eV and 3.67 eV, respectively. The
experimental bond strength can be obtained by appropriately combining
the dissociation energy of the ground state (Piper, 1979), the electronic
excitation to 1A and zero point energies in both states (Huber and
Herzberg, 1979), and the nitrogen “s +2p excitation (Moore, 1949).
This 'experimental' bond strength is 4.67 eV, and possesses the +0.10 eV
uncertainty of the ground state bond energy. The FORS calculation
recovers just 37% of the SCF error in the bond strength, an even lower
percentage than for the ground state.

The analysis of the a1A state of NH is much simpler than for the

1

ground state. Using the 'A PLOs (which are much like those of the

ground state), there are six SAAPs in the FORS function,
2
¢ = A{s"zhxy 91}

¢, = A{zzshxy 8,}

1
¢3 = A{szhzxy 61}

0, = Alz%hPxy 0.}

¢, = A{hzszxy 8,1}

5 1

% = A{szzzxy 9]} ,

where the 152 core is understood and the singlet Serber function

8 The other possible singlet function 62 is not used for

1 = %00%0%00"
the last three SAAPs, as triplet coupling the m electrons gives an

overall symmetry of ]2-. Each of the SAAPs is equal to a single CF,
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apart from a phase change resulting from sign choices in the tables in

the Appendix. The CFs present are
b, = As|?p(-2,172)s%|%s(0,-1/2)>
v, = As|20(-2,1/2)s 'p">|%s(0,-1/2)>
by = Al'0(-2,0)s%>%|"s(0,0)>"

Al'p(-2,0)s%%*|'s(0,0)>"

by = Al'0(-2,0)s e3> s (0 0)>"

|1D(-2,0)52ph>-|proton>+ ,

<
o
l

where the spin projection interchange operator of Ey. (6.15) has been
used. There are again two CFs w3 and wh which interact in a N+ 1D
calculation. This 2s-2p near degeneracy effect is removed by an addi-

tional transformation,

(b ) = Gy 9 (§ o)

where from a two configuration calculation on the lower 1D N+ state,
a = 0.990004 and b = -0.141041., Parity considerations perclude any
mi xing of ¥y and wz, or ws wi th w3 and wh' The total transformation

from SAAPs to CFs is a negative unit matrix followed by the above 2 x 2

rotation.
The first order perturbation theory IACC correction to a1A NH is
-0.2632 h, compared to the =0.2328 h correction for a separated hydrogen

atom and 2D nitrogen atom. The IACC bond strength is thus increased
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from the FORS result to a value of 4.50 eV, not far from the true value
of 4.67 eV. Explicit dlagonalization of the corrected CF Hamiltonian
gives an IACC correction of =0.2641 h.

The details of the IACC correction are shown in Table 6.3. The
coefficients of the CFs in the uncorrected wavefunction are included in
this table, and are qualitatively similar to those for the ground
state. Again, the most important CF is the dissociative product closely
followed by a N_H+ CF. N*H CFs make the next greatest contribution,
followed by N+H- CFs. All but one of the CFs have a greater correction
than the |2052p3>|25> CF, which is why singlet NH has a larger I|ACC
correction than the dissociated hydrogen pilus 2D nitroéen.

Table 6.4 contains a summary of the relevant energetics of the N,
H, and NH system. By construction, the FORS + |ACC energies of the
atoms are the exact energies, apart from very small basis expansion
errors. The deviation of the FORS + IACC molecular energies from the
exact values reflects the small (0.2 eV) errors in the bond energies for
both states. Table 6.4 also shows that the vibrationless FORS + IACC
separation of the two NH states is essentially the exact result. A
common procedure to correct SCF or FORS excitation energies is to reduce
them by the 0.49 eV error in the nitrogen hs-ZD separation. This gives
adjusted SCF and FORS excitation energies for NH of 1.34 eV and 1.49 eV.
This adjusted FORS result is deceptively good, as Tables 6.2 and 6.3
35" 'a states are hardly pure IhS>|25> and

clearly show the and

120> 2s>.



Table 6.3. IACC perturbation correction to a]A NH

Nitrogena Hydrogenb Total weightedC

CF Coefficient Correlation Relativity Correlation Correction Correction
120s%p3>| 25> 0.663786 -0.206° -0.0268 - -0.2328 -0.1026
120s'p*> 25> 0.365005 -0.258 -0.0242 - -0.2822 -0.0376
|'psZpB>*|'s>™®  0.221032 -0.157¢ -0.0270 -0.0398 -0.2238 -0.0109
1"0s%** Vs> 0.089176 -0.248 -0.0246 -0.0398 -0.3124 -0.0025
I'os'p3>*|'s>™  -0.241630 -0.223 -0.0238  -0.0398 ~0.2866 -0.0167
|‘Dszpl*:>_|protori>+ 0.557645 -0.272" -0.0266 --- -0.2986 -0.0929

0.2632 h

3Corrections are from Desclaux, Moser and Verhaegen (1971), except as noted.
bSee discussion for H2’ Section VI.B.2.

“Yotal correction for the CF, times its coefficient squared.

dVerhaegen and Moser (1970).

. . e . . . . . . +
©The notation indicates which configuration dominates the two configuration N state.

fFrom the electron affinity of this metastable ion given by Hotop and Lineberger (1975),
and data in references a and d.

Lze
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Table 6.4. Energies for N, H, and NH®

SCF FORS FORS + IACC Exact
N Hs -54 . 4004 -5k . 400k -54.6152 -54.6158
N 2D -54.,2955 -54.2955 -54.5283 -54.5290
7% - Ys) 2.85 eV 2.85 eV 2.36 eV 2.36 eV®
H 2s -0.4998 -0.4998 -0.4998 -0.5
NH 35" -54.9758 -55.0027 -55.2493 -55.2573
NH 1A -54.9087 -54.9301 -55.1933 -55.2006
T(lA - 32-) 1.83 eV 1.98 eV 1.52 eV 1.54 ev©

aEnergies in Hartree, except as indicated.

Since correlation

corrections are available only to three digits, the final digit in
columns three and four is uncertain.

bCalculated from data in this table.
2.38 eV (Moore, 1949).

Ctalculated from data in this table.

See note a.

The actual splitting is

The actual splitting is

1.56 eV, correcting the observed vy, for zero point vibrations (Huber

and Herzberg, 1979).

See note a.
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L, F

SCF and FORS calculations on the ground state of F2 were given in
Chapter Il. Plots of the PLOs for F2 were shown in Fig. 3.3. In this
section, the IACC correction is applied to Fz. Once again, the easiest
way to describe the SAAPs is with a hole notation, indicating which of
the PLOs are vacant. The following eight ]E; symmetry adapted linear
combinations of SAAPs formed from PLOs are present in the FORS
wavefunction:

-1 _-1
lzz z r>

<
—_
[

Uy x>y, vz

S
N
it

-1 _-1 -1 _-1
b3 = {|s£ z >+ |sr z, >}/V2

et
¢ = |s2 s>

= (%> + |250E
r
-2 -2 -2 -2
bg = Ll >+ x>+ |y, >+ |y D2

S S -1 -1
= {|s2 2, >+ sz >1/VZ

bg = s>+ s >¥V2

Here s, x, vy, and z refer to the various 2s and 2p PLOs, and & and r
refer to the left or right atoms. The first four SAAPs are covalent,
while the last four are ionic in nature. Note that the plus signs in

and ¢7 are a consequence of the phase choice for the z, and z,

b3
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orbitals, namely that these have their plus lobes directed toward each
other as shown in Fig. 3.3.

Analysis of these SAAPs in terms of atomic states gives the fol-

lowing CFs:
b, = As|P(0,1/2)s%°>| % (0,-1/2)s%p">

ALs 2P (1,1/72)s%07>| % (1,-1/2)s2p%>

<
N
]

by = Axs|2p(0,1/2)s2p°>] 25(0,-1/2)s 'p®>

by = As| 5(0,1/2)s >| 5(0 -1/2)s‘p6>

@5 = Ax|'s00,00s%% 7| 's(0,0)s2p >t

v = Ax|'s(0,0)s% 65 1"0(0,0)s2p >t

= Ax|"s(0,0)s2p%"| P (0,0)s 'p7>*

Ax|'5(0,0)s28>7| s (0,0)s %8>+

<
oo
[t}

Here the interchange operators defined in Eq. (6.15) have been used.
The transformation from the SAAP basis to the CF basis is given in
Table 6.5. Once again the 2s-2p near degeneracy of the 1S F+ states

must be removed by applying the transformation

_ ~ ~ a =-b
(b wg) = (g wg) (p )
following the transformation in Table 6.5, The coefficients a and b

. . + . .
are determined in a F atomic calculation on the lower ]S state,

= 0.981733 and b = -0.190259.



Table 6.5.
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1

Transformation from SAAPs to CFs for X Z; an

SAAP\:F

/3 -2//6

2/V/6 1/V3

aw5 and Y8 are subject to a further transformation
to obtain the final CFs. See text for discussion.
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The details of the IACC correction'are shown in Table 6.6. The
first‘order perturbation theory correction to F2 is ~0.8219 h, while at
infinite separation, the correction to F + F in their ground states is
-0.8090 h. The larger correction to the molecule than the separated
atom increases the bond strength from the uncorrected FORS value. The
IACC correction gives a bond strength of 1.04 eV, which is not as close
to the experimental value of 1.658 eV as was the case for H2 and NH.

The coefficients of the uncorrected FORS wavefunction in the CF
basis are given in Table 6.6. The F, wavefunction is dominated by two
neutral fluorines in their ground states. The next most important term
is the ionic F_F+ CF, with the F+ in its lowest singlet state, 1D. The
correction to this ionic SAAP is scarcely larger than that for the
neutral ground state FF SAAP, which is responsible for the small
(0.0129 h) IACC stabilization of F, over 2F.

Some of the corrections to the CFs given in Table 6.6 exceed 1 h.
One might well wonder about the treatment of such corrections by per-
turbation theory, as 1 h = 627.5 kcal/mole. However, the difference in
the corrections applied to any two SAAPs }s smaller, at most 0.2228 h
and usually much smaller. These differences in the corrections are
about an order to magnitude less than the differences in the diagonal
elements themselves. An even more conclusive justification of the
perturbative treatment is that diagonalization of the corrected

Hami ltonian gives a correction of -0.8229 h, hardly changed from the

perturbative result in Table 6.6,



Table 6.6. IACC

perturbation correction to X]Z; F2

lLeft Fluorinea

Right Fluorine®

Total

Weightedb

CF Coefficient Correlation Relativity Correlation Relativity Correction Correction
]ZPd>|2P0> 0.830507  -0.324° -0.0805 -0.324¢ -0.0805  -0.8090 ~0.5580
[2P+1>|2P+1> 0.021155  -0.324°  -0.0805 -0.324°  -0.0805  -0.8090  -0.000k
IZPd>|ZS> 0.188533  -0.324° -0.0805 -0.439 -0.0768  -0.9203 ~0.0327
|Zs>|zs> 0.025763  -0.439 -0.0768 -0.439 -0.0768  -1.0316 -0.0007
's>7|'ss%p*  0.236557  -0.399° -0.0804 -0.248°¢ -0.0808  -0.8082 -0.0452
|‘s>'|‘o>+ -0.404721 -0.399° -0.0804 -0.269° -0.0808  -0.8292 -0.1358
s> Tes* -0.226993  -0.399°  -0.0804 . -0.353 -0.0765  -0.9089  -0.0468
's>7|Tss%%*  0.048149  -0.399°  -0.0804 -0.455°  -0.0736  -1.0080 _-0.0023

-0.8219 h
%Corrections from Desclaux, Moser and Verhaegen (1971), except as noted.

bTotal correction for the CF, times its coefficient squared.

cVerhaegen and Moser (1970).



)

dThe notation indicates which configuration dominates the two configuration Fr state.
®From the electron affinity of F (Hotop and Lineberger, 1975) and data in reference a and c.

fExtrapolated from the correlation corrections in reference a for the high spin, Z =9
0314 soph 3

p S, P, and sop5 2P states.

8¢
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(A prodigious increase in the F2 basis over the one used in the
calculations described above improves somewhat the SCF and FORS bond
strengths. Using a (18s,9p,2d/5s,4p,2d) atom centered basis, with
tp = 0.36 and 1.26 and a (1s,1p,1d) set of bond orbitals, with optimized
exponents o = 0.87, Zp = 0.87, and &y = 1.80 gives SCF and FORS energies
of -198.770765 and -198.850875 h. These correspond to bond strengths of
-1.29 and 0.89 eV, respectively. It is unlikely that further improve-
ments in the basis can increase these values by more than 0.02 eV.

Most likely the 0.11 eV improvement in the SCF and FORS results would
carry over to the IACC result as well, which would leave it still rather

short of the experimental value.)

5. Discussion and Conclusions

A comparison of the IACC correction for the four electronic states
considered here is given in Table 6.7. In all cases, the IACC correc-
tion to the FORS wavefunction gives improved agreement with experimental
results. The performance of the IACC correction is particularly
encouraging for H2 and both states of NH. However, the result for F2
is rather poorer. This is probably because the electron correlation
error in the FORS function for F2 is more interatomic than intraatomic
in nature. Each F atom brings three lone pairs to the molecule, and
the interaction between these pairs is not accounted for by the FORS
function (which principally correlates the bond pair) or the IACC
correction.

It is difficult to compare previous Atoms in Molecules work to

the present IACC scheme. Most of the earlier work was done with rather
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Table 6.7. Comparison of bond energies®

wo o x'zt w3 NH a'a Foxlet

2 g 2 g
SCF 3.64 1.06 3.08 -1.40
FORS b.14 2.77 3.67 0.78
FORS + IACC 4.56 3.65 4 .50 1.04
exp 4,750 3.85° 46700 ¢»d 1.658°

A1 energies in eV,
Bhuber and Herzberg (1979).
Cy.

Piper (1979).

dMoore (1949).
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small, nonorthogonal atomic bases, and usually with a subset of the full
valence space CF sets used here. No éomparisdn to earlier work will be
given, but references to earlier H2, NH, and F2 calculations will be
given. References to work on other molecules can be found in the review
articles listed above. Hurley (1955) applied the AIM method of Moffitt
(1951b) to HZ’ and based on its great overestimate of the bond strength
proposed the ICC correction scheme (1956). NH has been frequently con-
sidered by various workers. Hurley (1958a, 1958b) has given ICC correc-
tions to the ground and excited states of all second period hydrides,
including NH. Krauss and Wehner (1958) also apply the ICC correction to
NH. This paper deals with the problem of transforming a basis of Slater
determinants constructed from orthonormal MOs into a valence bond form,
a problem solved here with the aid of the PLOs. Liu and Verhaegen
(1970) have utilized Mulliken population analyses to identify atomic
configurations in the NH wavefunction. Finally, Balint-Kurti and
Karplus (1969) have applied their Orthogonalized Moffitt modification
of AIM theory to Fz.

A preliminary report of the IACC correction scheme for F2 has been
given by Ruedenberg et al. (1982). In this sketch of the IACC method,
relativistic corrections were omitted, and basis errors for the various
atomic states were included in the corrections. While relativity con-
tributes little to the F, bond strength (see below), the inclusion of
basis errors, particularly for the F- ion, does affect the bond strength,
giving a value of 1.30 eV. These basis corrections to the atomic

states have not been applied here for the following reason. Adding
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diffuse functions to the diatom basis set will contribute very little to
the uncorrected FORS results. These diffuse functions will substantially
reduce the basis errors in SCF calculations on the negative ions to
about the same size as those for the neutral or positive ions. |If basis
errors are excluded from the |ACC corrections, adding the diffuse func-
tions will have almost no effect on the magnitude of the IACC correction,
rather than substantially reducing the total IACC correction. Assuming
atomic correlation corrections to be independent of the atomic basis
expansion chosen is in keeping with the assumption by Hurley that the

ICC correction is independent of orbital scaling, and the assumption in
the present case that the correlation correction doesn't change when

the AOs of a particular state are replaced by the molecular PLOs.

There are a few sign changes in the present case from the earlier
presentation, due to different phase choices in the tables in the
appendix to this chapter.

An interesting byproduct of the I1ACC scheme is its ability to
incorporate relativistic as well as correlation errors in the correc-
tion terms. Applying the perturbative treatment to the relativistic
corrections only gives a total relativistic correction of -0.0262 h to
32— NH, and -0.0262 h to lA NH, compared to -0.0268 h for the dissocia~-
tive limit of both states. Relativity thus decreases these bond
strengths by less than 0.02 eV, and leaves the excitation energy
unchanged. For FZ’ the relativistic correction is =0.1607, compared
to =0.1610 for 2F, which decreases the bond strength by less than

0.01 eV. Although the relativistic corrections are substantial, in
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the case of F2 and NH they are very nearly canceling. Such would not
be the case if the species being compared possess greatly different .
occupation of the 2s orbital, as Feller and Davidson (1980) suggest may
be the case for singlet ana triplet methylene.

In conclusion, the full valence space FORS wavefunction may be
expressed in a basis of composite functions, that is, products of
neutral and ionic atomic states. The expansion of the FORS wavefunction
in these CF bases reveals much about the participation of atoms and ions
in the molecular wavefunction. In addition, such expansions permit the
application of the IntraAtomic Correlation Correction to the molecular
FORS wavefunction. This correction utilizes experimental data for the
various atomic states to correct the molecular wavefunctions for
dynamical correlation effects not incorporated in the FORS model. The
IACC scheme gives very good results for H2 and two states of NH, and
somewhat improved results for F2‘ Relativistic contributions to bond

strengths are found to be negligible for the electronic states con-

sidered here.

C. Appendix: Real Atomic States
A prerequisite for |ACC calculations or molecules coﬁtaining the
elements from the second period is the knowledge of these atom's
valence states. These valence states must be expressed in terms of
real atomic orbitals, as molecular calculations are performed with real
PLOs. An L-S coupling scheme is used for the atomic states, except

that the restriction to real orbitals precludes the use of Lz as a good

quantum number .
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Salmon and Ruedenberg (1972) have described a computer algorithm
for the generation of atomic states that are eigenfunctions of LZ, Lz’
Sz, and Sz‘ Karwowski and Fraga (1974), using a modification of this
procedure, have tabulated all atomic states arising from the pN,
N=2,3; d", N=2,3,4,5 and f\, N = 2,3,4,5,6,7 configurations. Both
of these procedures use complex atomic orbitals, with Serber spin
dependence. These algorithms rely on simultaneous diagonalization of

2

2 . . .
the L, Lz, S*, and Sz matrices, so that the eigenvectors, that is, the

atomic states, have arbitrary phases.

1. pN states

In the present case, the pN atomic states are obtained using angular
momentum ladder operators (Gray and Wills, 1931). In this procedure,
the state with highest total angular momentum, orbital angular momentum
projection, and spin angular momentum projection is written in terms of
complex orbitals. The lowering operators L and S are applied to
generate the states with lower projections. States with lower total
orbital angular momentum are generated by orthogonality to the higher
angular momentum states. The phases of the L-S states possessing the
maximal projections LZ = L and SZ = S have arbitrary phase, but the
phases of all other states are fixed by the lowering operators.

Once the atomic states constructed from complex p orbitals are
found, the atomic states using real p orbitals can be formed. Within
the Condon-Shortley phase convention, the complex and real p orbitals

are related by the unitary transformation,
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-1//2 -2 0 [ x

0 = 0 0 1 y

-1 WZ -i/VZ 0
Atomic states constructed from real p orbitals are found by substituting
for the complex orbitals. The states with LZ = 0 are always pure Eeal
or pure imaginary functions of the real p orbitals. |If they are
imaginary, real valued atomic states are generated by multiplying by i.
The pair of states formed from real atomic orbitals with orbital angular
momentum +Lz and -Lz, with all other quantum numbers equal, are either
complex conjugates or negative complex conjugates. The normalized sums
and differences of these pairs are thus pure real or pure imaginary
functions. The pure imaginary functions are again multiplied by i to
generate real states.

All real valued pN states constructed from real p orbitals have
been found by this process. The symbol Lz is used below to designate
the real linear combinations of +Lz and -Lz eigenstates, while -Lz
designates the linear combination made real by mdltiplication by i.

Lz is not a good quantum number, except when Lz = 0. The real atomic
pN states are given in Tables 6.8 to 6.11. In these tables, each state
is labeled as ]25+1L(LZ,SZ)>. The geminal spin functions are labeled
eSSZ’ and are given as footng;es to Tablé 6.9. The multielectron Serber

spin functions are labeled ea z’ where a indexes the function in cases

where more than one such function is possible.
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Table 6.8. p‘, ps, p6 states

p] states

Doublets® X0, yo. zo

12P(1,1/2)> -1

12p(0,1/2)> 1
1Zp(-1,172)> 1
p5 states
b 2.2 2 2 2 2
Doublets Yy 27x eooeooa X z"y eOOSOOa X'y z eooeooa
2
|“P(1,1/2)> -1
12p(0,1/2)> 1
12p(-1,172)> 1
p  state

1 222 e

¥poublets with s, = -1/2 are obtained by replacing o with B.

b
Doublets with s, = -1/2 are obtained by replacing 6,,6,5a by
8000008 8gg = (#B=Ba)/VZ. 00%00



Table 6.9. p2 states
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. a 2 2 2
Singlets X eOO Y 600 z 600 Xy 600 . Xz 600 vz 600
I's(0,0)> 1/V/3 1/Y3 /Y3
|'p(2,0)> WWZ o -3
I]D(1,0)> -1
|]D(0,0)> 1//6 1//6 -2//6
|'0(-1,0)> |
|"o(-2,00>

Triplets Xy 611 X2 611 yz 61]
3p(1,1) -1

3p(0,1) i

3p(-1,1) 1

aGOO = (aB-Ba)/V2.

bTriplets with s, = 0 or -1 are obtained by replacing 6771 by 61g

or 61_1, respectively.

811

= a0, 8,5 = (0B+Ba) /Y2, and 6

1-1



Table 6.10. p3 states

poublets®  x2y e:/z /2 2, 6:/2 2 2 6:/2 /2 2, e;/z 1/2
12p(1,1/2)> -1/7

12p(0,1/2)> V)V VT
12P(-1,1/2)> 1//2

120(2,1/2)> W NI
12p(1,1/2)> -1/V2

120(0,1/2)>

120(-1,1/2)> -1/VZ

12p(-2,1/2)>

Quartetsb Xyz 93/2 3/2
4
%The doublet spin functions are 91/2 1/2 = eooa, and e;/z 172 _
(eloa - V2 6116)//§. Doublet states with 5, = -1/2 are obtained by
replacing 9}/2 1/2 with 6:/2-]/2 = 6008 and 6;/2 1/2 wi th 65/2—1/2 =

wms-/faqw/@.

bThe quartet state with projection s_ = 1/2, ~-1/2, or -3/2 is

4
3/23/2 L ik 6372 172

obtained by replacing 6 r
g3/271/2 _ (6, o + V2 6106)//§ or §3/273/2

(6,,8 + V2 e]oa)//i or
01185 respectively.

1-1
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2, e}/2 1/2 22y 9:/2 1/? :/2 1/2 ;/2 1/2

z Xyz 8 Xyz 6

-1/V2

/Y2

1/V2




Table 6.11. ph states

. 2 2 2.2 2.2 2 2 2
Singlets x°y 600600 x"z 600600 Yz 600600 xyz 600600 vy xz 600600 zZ Xy 600600
I's(0,0)> 1//3 1//3 1//3
|'p(2,0)> 1//2 -1//2
|‘D(1,o)> -1
|'p(0,0)> -2//8 1//6 1//6
['D(-1,0)> 1
I'p(-2,0)> -1

Triplets Xyz eooell Yy xz 9006]] z xy 900611
Be(1,1)> -1
13p(0,1)> i
1Be(-1,1> 1
aL . . _ _ . . . .
Tflplets with s, = 0 or -1 are obtained by replacing 600611 wi th 600610 or 90091_],
respectively.

owe
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2, ssz and s]pN states

The ssz states are trivially generated from the pN states given
above. The space part of the appropriate pN state is prefixed with 52,
and its Serber function is prefixed with the geminal function 600.

The sle states are most readily generated from the pﬁ;states by
coupling the s electron at the end, i.e., pNs1. It is readily shown
that the L and Lz quantum numbers of a pNs1 state are exactly the same
as the corresponding pN state. The pNs1 state is obtained by coupling
an sa and/or an sB electron to the appropriate pN states.

Formulae for coupling one electron to a Serber function are given
by Salmon (1974). The process is illustrated for one case with N = 3
that occurs in the NH wavefunction. Three possible states for p3 wi th
space product xyz and L = 0 are the |ZD(O,1/2)>, |hS(O,3/2)>, and
|uS(0,1/2)> states. The possible triplet states for p3s1 with space
product xyzs and L =0 and S, =1 are |30(0,1)> and |3S(0,1)>. The
|30(O,1)> state can be obtained by coupling sa to |ZD(O,1/2)>, while
the |35(0,1)> state can be reached by coupling so to |AS(0,1/2)> or sB
to |q5(0,3/2)>. Using Salmon's formulae, the spin dependencé for

130(0,1)> is

Q}l(he-) - e;/Z 1/2(38-)0.

For the |3S(0,1)> state, the spin function is

Q;](he-) - %-63/2 1/2(3&")@ + %? 63/2 3/2(3e-)B
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3.1

The desired p”°s states are, therefore,

|3D(O,1)> Al{xyzs Q}l}

-A{xyzs 9;1

13s(0,1)> }

(There is a third possible triplet function Q;l, obtained by o coupling
an electron to e}/z 1/Z(Be-), that is used in the |3D(-2,1)> state.)

In general, the spin functions stz, obtained by coupling a single
electron to the Serber functions for one fewer electron, are not

themselves Serber functions, but are related to them by an orthogonal

transformation,

Elements of the transformation D are most readily calculated by expanding
both 6 and @ in terms of explicit a/f products. In the present case,

the Serber triplet functions with Sz = 1 for four electrons are

81 = Bpof1y

%2 % %11%00
8 = (8,48, = 0408¢¢)/Y2
Expressing the @ spin functions in terms of these gives

n}‘ = (e;1 - V2 e;])//g

|

i

My

1 11
2, (V2 8, * 6,
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The p35] 35 and 3D states with spin projection 1 can now be expressed in

terms of SAAPs, with Serber spin dependence rather than Q's, as

triplets Xyz2s e:] Xyzs 6;1 Xyz2s 6;1
13p(-2,1)> 1
130(0,1)> 1/V3 /373

135(0,1)> V273 1//3
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